

CLUE Worksheet

CLUE	NAME	Possible Ordered Pairs
1		
2	Archimedes	$(2,0),(-2,0)$
3	Boole	$(-2,2)$
4	Cauchy	$(0,3)$
5	Dirichlet	$(2,1),(-2,3)$
6	Euler	$(2,0),(-2,2)$
7	Fibonacci	$(-2,3),(0,2),(2,1)$
8	Galois	$(-1,1)$
9	Hilbert	$(2,1)$
10	Jacobi	$(-1,2)$
11	Kepler	$(2,3)$
12	Leibniz	$(-1,3),(0,1),(1,-1)$
13	Maclaurin	$(0,2),(-1,3),(1,1)(2,0)$
14	Napier	$(1,3)$
15	Pascal	$(1,-1),,(-1,3)$
16	Russell	$(1,1)$
17	Steno	$(0,0)$
18	Thales	$(-2,2),(-1,2),(0,2),(1,2),(2,2)$
19	Viete	$(1,-1),(2,0),(1,1),(0,2)(-1,-1),(-1,1),(-2,0)$
20	Wallis	$(2,2),(1,3)$
21	Zorn	$(0,1),(-1,2),(-2,3),(1,0),(2,1)$

Solutions to Problems:

CLUES:

2. A line of slope $m=3$ intersects the x-axis at point A and the y-axis at point B. The point O is the origin and the area of triangle AOB is 6 square units. Archimedes sits at point A .

We will denote the x-intercept by $A(k, 0)$.
Since the slope of the line is 3 , the equation of the line is $y=3 x+b$ from which we can find the y-intercept.
Substituting the coordinates of A into the equation gives $0=3 k+b s o b=-3 k$.
The area of the triangle is $\frac{(A O)(B O)}{2}=\frac{k(3 k)}{2}=6$.
Solving for k , we obtain $3 \mathrm{k}^{2}=12$, so $k= \pm 2$.
3. A circle is tangent to the x-axis at $(-2,0)$ and tangent to the y-axis at $(0,2)$. Boole sits at the coordinates of the center of the circle.

Because the radii are perpendicular to the axes, the coordinates of the center are $(-2,2)$.
4. A circle intersects the x-axis at $(-4,0)$ and $(4,0)$ and intersects the y-axis at $(0,-2)$ and $(0,8)$. Cauchy sits at the coordinates of the center of the circle.

The center can be found by taking the perpendicular bisector of the segment joining $(-4,0)$ and $(4,0)$ and the perpendicular bisector of the segment joining $(0,-2)$ and $(0,8)$, and seeing where they intersect $(0,3)$.
5. $A(4,5)$ and $B(0,7)$ are two consecutive vertices of square $A B C D$. Dirichlet is seated at one of the other vertices of the square (C or D).

Consecutive sides of a square are perpendicular to each other, so their slopes are negative reciprocals. From A to B, one travels 4 units to the left and 2 units up. So from B to C, there are two possibilities: one must travel 2 units to the left and 4 units down $(-2,3)$ or one must travel 2 units to the right and 4 units up (2,11). The latter does not give coordinates for C and D that lie in the domain. So, C must be $(-2,3)$ and then D would be $(2,1)$.
6. A (-1, -1$)$ and $S(1,3)$ are opposite vertices of square RAMS. Euler sits at one of the other vertices (R or M).

The midpoint of the segment $S A$ is $Q(0,1)$. By rotating the diagonal SA 90 degrees around the point Q, we obtain the diagonal RM. Note that diagonal SA has slope 2, so diagonal RM has slope $-1 / 2$. To get from Q to S, we moved up 2 and across 1 . To get to the other vertices, we move from $Q(0,1)$ down 1 and to the right 2 to get $\mathrm{M}(2,0)$, and up 1 and to the left 2 to get $R(-2,2)$.
7. $\quad A(-5,2)$ and $B(-3,6)$ are two vertices of the isosceles triangle $A B E$ with $A E=B E$. Fibonacci is seated at the coordinates of vertex E.

First find the midpoint of $A B$: $\left(\frac{-3+(-5)}{2}, \frac{6+2}{2}\right)=(-4,4)$. The slope of $A B$ is 2 , so the slope of the perpendicular bisector of $A B$ is $-1 / 2$. Therefore vertex E must lie on the line $y=-\frac{1}{2} x+2$. The only points in our domain that lie on that line are $(-2,3),(0,2)$, and $(2,1)$.
8. The points $(-1,0),(-1,4),(3,4)$, and $(3,0)$ form a square. A line whose x-intercept is $(-3,0)$ cuts the square into two regions of equal area. Galois sits at one of the points of intersection of the line and the square.

Let $(-1, k)$ and $(3,4-k)$ be the points of intersection of the line and the square (draw a diagram to help see this). Then the slopes through $(-3,0),(-1, k)$ and (3, 4-k) must be equal, so: $\quad \frac{k-0}{-1+3}=\frac{4-k}{3+3}=\frac{(4-k)-k}{3-(-1)}$. Solving the proportion, we get $\mathrm{k}=1$. Therefore, the two points of intersection are $(-1,1)$ and $(3,3)$, but only the former is in our domain.
9. The isosceles triangle $A B D$ has vertices $A(-3,0)$ and $B(1,-4)$, and $A D=B D$. Hilbert is seated at the coordinates of D that will create a triangle $A B D$ of area 12 square units.

The slope of $A B$ is -1 and the midpoint of $A B$ is $(-1,-2)$.
So, the slope of the perpendicular bisector of $A B$ (where point D must lie) is 1 .
Therefore D must lie on the line $y=x-1$.
Since the length of $A B$ is $4 \sqrt{2}$ units, the height must be $3 \sqrt{2}$ units.
So, the distance from $(-1,-2)$ to $D(x, x-1)$ must equal $3 \sqrt{2}$ units.
Use the distance formula to get

$$
\begin{aligned}
& \sqrt{(x-(-1))^{2}+((x-1)-(-2))^{2}}=3 \sqrt{2} \\
& \sqrt{(x+1)^{2}+(x+1)^{2}}=3 \sqrt{2} \\
& \sqrt{2(x+1)^{2}}=3 \sqrt{2} \\
& |x+1|=3, \text { so } x=2 \text { or } x=-4
\end{aligned}
$$

Therefore, Hilbert sits at the point $(2,1)$ since that is the only point that satisfies the domain.
10. $\quad M(2,6)$ is the midpoint of the segment $A B$ with A on the line with equation $y=2 x$ and B on the line with equation $y=x+3$. Jacobi is located at the coordinates of either point A or point B.

Since A is on the line of equation $y=2 x$, we can write $A(a, 2 a)$.
Since B is on the line of equation $y=x+3$, we can write $B(b, b+3)$.
Using the formula for the midpoint of a line segment, we write $\left\{\begin{array}{l}2=\frac{a+b}{2} \\ 6=\frac{2 a+b+3}{2}\end{array}\right.$
This system simplifies to $\left\{\begin{array}{l}a+b=4 \\ 2 a+b=9\end{array}\right.$
Subtracting the first equation from the second, we obtain $a=5$ which gives $b=-1$.
Thus we have $A(5,10)$ and $B(-1,2)$, so Jacobi must sit at $(-1,2)$.
11. A circle has its center P on the line $y=x+1$, passes through the point $(-1,3)$, and is tangent to the x-axis. Kepler sits at the center of this circle.

Since P, the center of the circle, is on line $y=x+1$, we can write $P(p, p+1)$.
The circle is tangent to the x-axis at a point $B(p, 0)$, and
the radius of the circle is $r=P B=p+1$.
The radius of the circle is also $\sqrt{(p+1)^{2}+(p+1-3)^{2}}$.
So,

$$
\begin{aligned}
& p+1=\sqrt{(p+1)^{2}+(p-2)^{2}} \\
& (p+1)^{2}=(p+1)^{2}+(p-2)^{2} \\
& p=2
\end{aligned}
$$

Therefore, Kepler must sit at $(2,3)$.
12. Leibniz sits on the line that is perpendicular to $y=\frac{1}{2} x+1$ and passes through the point (2, -3).

First notice that the line $y=\frac{1}{2} x+1$ has slope $1 / 2$, so the line perpendicular to it must have slope -2. Starting at point (2, -3), go back 1 and up 2 to get to ($1,-1$), then go back 1 and up 2 to get to $(0,1)$ and go back 2 and up 1 to get to $(-1,3)$. Leibniz must sit at one of these three points.
13. Maclaurin sits on the line that is parallel to $x+y=2011$ and passes through the point $(-3,5)$.

Note that the slope of the line $x+y=2011$ is -1 , so the slope of a line parallel to it must also be -1 .
Starting at $(-3,5)$, go to the right 1 unit and down 1 unit to get to $(-2,4)$.
Continue in this manner to get points $(-1,3),(0,2),(1,1)$, and $(2,0)$.
14. Line QU has x-intercept at (7, 0). Line $X Y$ is perpendicular to $Q U$ and has y-intercept at $(0,1)$. The two lines intersect at a point on the line $y=3 x$. Napier sits at this point of intersection.

The point of intersection is situated on the line $y=3 x$, so we can call its coordinates ($c, 3 c$).
The slopes of QU and $X Y$ are given by $\frac{3 c-0}{c-7}$ and $\frac{3 c-1}{c-0}$, respectively.
Since the two lines are perpendicular, we have $m_{Q U}=\frac{-1}{m_{X Y}}$, which translates into $\frac{3 c-0}{c-7}=-\frac{c-0}{3 c-1}$.

Dividing by c on both sides and simplifying, we get
$9 c-3=-c+7$
$c=1$
So, Napier must sit at the point $(1,3)$.
15. The square $A B C D$ has vertex A with coordinates $A(-3,-3)$. The diagonal $B D$ is located on the line with equation $x+3 y=-2$. Pascal sits at the coordinates of one of the other vertices B, C, or D.

Draw a diagram to help you visualize the problem.
Since the diagonals of a square are perpendicular, the line containing the diagonal AC has slope $\mathrm{m}=3$.

Therefore, the equation of the line $A C$ is $y-(-3)=3(x-(-3))$.
The center of the square is found by intersecting BD and AC.
We have the system:

$$
\begin{cases}D B: & x+3 y=-2 \\ A C: & 3 x-y=-6\end{cases}
$$

Solving, we get $x=-2$ and $y=0$.
Starting at $(-2,0)$, use the slopes to get $B(1,-1), C(-1,3)$, and $D(-5,1)$.
So, Pascal must sit at either (1, -1) or (-1, 3).
16. The points $M(2,4), N(0,3)$, and $P(3,2)$ are the midpoints of the sides of the triangle $A B C$. Russell sits at the coordinates of one of the vertices of the triangle ABC.

Draw a diagram to help visualize the problem.
Since M and P are the midpoints of the sides $B C$ and $A C$, respectively, MP is parallel to $A C$.
For similar reasons, we also have $M N \| A B$ and $N P \| B C$.
Therefore, $m_{B A}=m_{N M}=\frac{1}{2}$ and $m_{A C}=m_{M P}=-2$ and $m_{B C}=m_{N P}=\frac{-1}{3}$.
We can then write equations for the three lines:
$\int B C: \quad m=\frac{-1}{3}$, passes through $(2,4) \quad y-4=\frac{-1}{3}(x-2)$
BA: $\quad m=\frac{1}{2}$, passes through $(3,2) \quad y-2=\frac{1}{2}(x-3)$
$A C: \quad m=-2$, passes through $(0,3) \quad y-3=-2(x-0)$

This system simplifies to:

$$
\begin{aligned}
x+3 y & =14 \\
x-2 y & =-1 \\
2 x+y & =3
\end{aligned}
$$

Solving simultaneously, we get $A(1,1), B(5,3)$, and $C(-1,5)$.
So, Russell must sit at (1, 1).
17. Steno is seated on the graph of $x^{2}+y^{2}=0$.

The graph has only one point $(0,0)$.
18. Thales is seated on the graph of $|y|=2$.

Y must be equal to 2 or -2 , so the graph is two parallel lines with slopes equal to zero, one passing through the point $(0,2)$ and the other through ($0,-2$). Only the former is in our domain, so Thales must be at $(-2,2),(-1,2),(0,2),(1,2)$, or $(2,2)$.
19. Viete is seated on the graph of $|x|+|y|=2$.

Examine four cases corresponding to the four quadrants:
Case 1: If $x \geq 0, y \geq 0$, the equation becomes $x+y=2$.
Case 2: If $x<0, y \geq 0$, the equation becomes $-x+y=2$.
Case 3: If $x<0, y<0$, the equation becomes $-x-y=2$.
Case 4: If $x \geq 0, y<0$, the equation becomes $x-y=2$.
Combining the four we get a square with the vertices on the axes.
20. Wallis is seated on the graph of $|x+y|=4$.

We have two possibilities:

$$
x+y=4 \text { or } x+y=-4
$$

The graph is composed of two parallel lines.
The only points in our domain are $(2,2)$ and $(1,3)$.
21. Zorn is seated on the graph of $y=|x-1|$.

This absolute value curve forms a V with its vertex at $(1,0)$.
This can be seen by using the definition of absolute value to get the following:
If $x-1 \geq 0$ or $x \geq 1$, then $y=x-1$.
If $x-1<0$ or $x<1$, then $y=-x+1$.
Graph the first equation for points whose x-coordinates are greater than or equal to 1 , and graph the second equation for points whose x-coordinates are less than 1.

There are five points that are contained in our domain:
$(0,1),(-1,2),(-2,3),(1,0)$, and $(2,1)$.

