Heat Index Formula

A good example of matrix multiplication

1. The formula to find the Heat Index, HI , when given the temperature, T , in Fahrenheit degrees and the Relative Humidity, R, is:
$H I=\left[\begin{array}{llll}1 & T & T^{2} & T^{3}\end{array}\right]\left[\begin{array}{cccc}16.923 & 5.37941 & 7.28898 \times 10^{-3} & 2.91583 \times 10^{-5} \\ 1.85212 \times 10^{-1} & -1.00254 \times 10^{-1} & -8.14971 \times 10^{-4} & 1.97483 \times 10^{-7} \\ 9.41695 \times 10^{-3} & 3.45372 \times 10^{-4} & 1.02102 \times 10^{-5} & 8.43296 \times 10^{-10} \\ -3.8646 \times 10^{-5} & 1.42721 \times 10^{-6} & -2.18429 \times 10^{-8} & -4.81975 \times 10^{-11}\end{array}\right]\left[\begin{array}{c}1 \\ R \\ R^{2} \\ R^{3}\end{array}\right]$.
Expand by multiplying these three matrices together to get a polynomial of sixteen terms.
2. Now use this expansion to determine the Heat Index if the Temperature is 93 degrees Fahrenheit and the Relative Humidity is 21%.
3. Use this formula to determine the Heat Index if the Temperature is 100 degrees Fahrenheit and the Relative Humidity is 60%.
4. Use this formula to determine the Heat Index if the Temperature is 92 degrees Fahrenheit and the Relative Humidity is 46%.

Answers:
1.

$$
\begin{aligned}
\mathrm{HI}= & 16.923+\left(1.85212 \times 10^{-1} \cdot T\right)+\left(9.41695 \times 10^{-3} \cdot T^{2}\right)-\left(3.8646 x 10^{-5} \cdot T^{3}\right) \\
& +(5.37941 \cdot R)-\left(1.00254 \times 10^{-1} \cdot T \cdot R\right)+\left(3.45372 \times 10^{-4} \cdot T^{2} \cdot R\right)+\left(1.42721 x 10^{-6} \cdot T^{3} \cdot R\right) \\
& +\left(7.28898 x 10^{-3} \cdot R^{2}\right)-\left(8.14971 x 10^{-4} \cdot T \cdot R^{2}\right) \\
& +\left(1.02102 \times 10^{-5} \cdot T^{2} \cdot R^{2}\right)-\left(2.18429 \times 10^{-8} \cdot T^{3} \cdot R^{2}\right) \\
& +\left(2.91583 x 10^{-5} \cdot R^{3}\right)-\left(1.97483 x 10^{-7} \cdot T \cdot R^{3}\right) \\
& +\left(8.43296 x 10^{-10} \cdot T^{2} \cdot R^{3}\right)-\left(4.81975 \times 10^{-11} \cdot T^{3} \cdot R^{3}\right)
\end{aligned}
$$

2. $\mathrm{HI}=89.31$ degrees.
3. $\mathrm{HI}=129$ degrees.
4. $\mathrm{HI}=96$ degrees.
