USING THE GRAPHING CALCULATOR TO SOLVE PROBLEMS INVOLVING
 SEQUENCES

TOGETHER:

1) A sequence is defined by the formula: $u(n)=\frac{n^{2}+16 n+39}{n^{2}+4 n+3}$. That is $\mathrm{u}(1)=7, \mathrm{u}(2)=5$, $u(3)=4, u(4)=3.4$ etc \ldots. How many terms of this sequence are integers? How many terms of this sequence are greater than 1.5 ?
2) Find the sum of the squares of the first 50 positive integers.
3) Calculate the sum $1+(4 / 5)+(4 / 5)^{2}+\ldots+(4 / 5)^{50}$
4) The Fibonacci sequence is defined as follows. The first term is $u(1)=1$, the second term $u(2)=1$. Each other term in the sequence is defined as the sum of the previous two terms, $u(n)=u(n-1)+u(n-2)$. For instance: $u(3)=2, u(4)=3, u(5)=5, u(6)=8$ etc \ldots Find the fiftieth term of this sequence.

HOMEWORK:

1) A sequence is defined by the formula: $u(n)=\frac{n^{2}+9 n+8}{n^{2}+3 n+2}$. How many terms of this sequence are integers? How many terms of this sequence are greater than 1.1 ?
2) Find the sum of the cubes of the first 50 positive integers.
3) Calculate the sum $1+(5 / 4)+(5 / 4)^{2}+\ldots+(5 / 4)^{50}$
4) The first term in a sequence of numbers is $u(1)=5$. Succeeding terms are defined by the statement $u(n)=u(n-1)+2 n+3$ for $n \geq 2$. For instance, $u(2)=5+4+3=12 ; u(3)=12$ $+6+3=21$ Find $u(50)$.
5) A sequence is recursively in the following way. The first two terms are $u(1)=1$ and $u(2)=2$. Each other term is the difference of the previous two terms:u(n) $=u(n-1)-u(n-2)$. Write the first 10 terms of the sequence. What is $u(100)$? Calculate the sum of the first 100 terms of the sequence.
Answers homework: 1) 2 integers, 57 terms
6) 1625625
7) 280256
8) 2700
9) $-1 ; 3$
