Applications of Derivatives

Analysis of Functions

- Increasing / Decreasing

```
If f'(x) > 0 Then f(x) is increasing.
If f'(x) < 0 Then f(x) is decreasing.
If f'(x) = 0 Then f(x) is constant.
```

- Concavity

```
If f''(x) > 0, then f(x) is concave up. (Mr. Happy Face)
If f''(x) < 0, then f(x) is concave down. (Mr. Frowny)
Points of inflection occur when the concavity changes.
Test: If there is a point of inflection, the second
    derivative is zero.
    BUT just because the second derivative is zero
    doesn't guarantee a point of inflection.
```


- Relative Extrema

```
1st derivative test:
    Test points on each side of the critical points
        found by substituting in the first derivative.
        If the value of the derivative of the point to
        the left of the critical point is positive and
        the value of the derivative for the point to
        the right is negative, then the critical point
        is a relative maximum.
    If the value of the derivative of the point to
        the left of the critical point is negative and
        the value of the derivative for the point to
        the right is positive, then the critical point
        is a relative minimum.
    If the values of the derivative of the points to
        the left and the right of the critical point
        are the same (i.e., both positive or both
        negative), then the critical point is a point
        of inflection.
```

```
2nd derivative test:
    Take the first derivative and set it equal to
        zero to solve for critical points.
    Take the second derivative of the function.
    Substitute the critical point in the second
        derivative.
            If this value is negative, the critical point
            is a relative maximum.
            If this value is positive, the critical point
                is a relative minimum.
            If this value is zero, the critical point
            is a possible point of inflection. Test
            points on either side of the critical point
            by substituting them into the second
            derivative to verify that the concavity
            changed.
```


- Mean Value Theorem

If $f(x)$ is defined and continuous on $a \leq x \leq b$ and differentiable on $a<x<b$,
Then there is at least one number c between a and b
where $f(b)-f(a)=f^{\prime}(c)(b-a)$

In other words, $\quad f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Geometrically, there must be at least one point in the interval where the tangent to the curve at that point is parallel to the secant line which passes through the points (a, $f(a)$) and (b, $f(b)$).

- exponential Growth and Decay

$$
\begin{aligned}
& \frac{d y}{d t}=k y \text { where } k \text { is called the constant of proportionality. } \\
& y=N e^{k t} \quad \text { or } \quad A=P e^{r t} \quad \text { or } \quad \mathrm{y}=C e^{k t}
\end{aligned}
$$

- Newton's Method
- Implicit Differentiation
- Related Rates
- Applied Maxima / Minima

Slope Fields

