\qquad
A calculator is allowed on this section of the Exam.
I. Multiple Choice
\qquad 1. The slope of the line tangent to the graph of $y=\ln \left(x^{2}\right)$ at $x=e^{2}$ is
(A) $\frac{1}{e^{2}}$
(B) $\frac{2}{e^{2}}$
(C) $\frac{4}{e^{2}}$
(D) $\frac{1}{e^{4}}$
(E) $\frac{4}{e^{4}}$
\qquad 2. With respect to the y-axis, point $(-4,1)$ is symmetric to
A $(4,1)$
B $(-4,-1)$
C $(4,-1)$
D $(1,-4)$
E $(1,4)$
\qquad 3. Determine the differential $d y$ given that $y=x \cot (x)$
(A) $-\csc ^{2} x$
(B) $-x \csc ^{2} x d x$
(C) $-x \csc ^{2} x+\cot x$
(D) $\left(-x \csc ^{2} x+\cot x\right) d x$
(E) None of these
\qquad 4. Determine the equation of the tangent line to the graph of $y=f(x)$ at the point where $x=-3$ if $f(-3)=2$ and $f^{\prime}(-3)=5$.
(A) $y=-3$
(B) $y=5 x+2$
(C) $y=5 x+17$
(D) $y=2 x+5$
(E) It can not be determined from this information.
\qquad 5. The derivative of $y=6 x^{2}$ is
(A) x
(B) 12
(C) $12 x$
(D) 0
(E) None of these
\qquad 6. The second derivative of $y=8 x$ is
(A) 0
(B) $8 x$
(C) x
(D) 8
(E) None of these
\qquad 7. A ball is dropped from a height of 1 meter. It always bounces to one-half its previous height. The ball will bounce infinitely but it will travel a finite distance. What is the distance?
(A) 4 m
(B) 3 m
(C) $2 \frac{31}{32} \mathrm{~m}$
(D) 2 m
(E) It can not be determined
\qquad 8. $\frac{d}{d x}\left(\operatorname{Sin}^{-1}(2 x)\right)=$
(A) $\frac{-1}{2 \sqrt{1-4 x^{2}}}$
(B) $\frac{-2}{\sqrt{4 x^{2}-1}}$
(C) $\frac{1}{2 \sqrt{1-4 x^{2}}}$
(D) $\frac{2}{\sqrt{1-4 x^{2}}}$
(E) $\frac{2}{\sqrt{4 x^{2}-1}}$
\qquad 9. If $y=e^{n x}$, where n is a constant, then $\frac{d^{n} y}{d x^{n}}=$
(A) $n^{n} e^{n x}$
(B) $n!e^{n x}$
(C) $n e^{n x}$
(D) $n^{n} e^{n x-1}$
(E) $n!e^{x}$
10. Water flows at 8 cubic feet per minute into a cylinder with radius 4 feet. How fast is the water level rising?
(A) $2 \mathrm{ft} / \mathrm{min}$
(B) $\frac{1}{\pi} \mathrm{ft} / \mathrm{min}$
(C) $\frac{1}{2 \pi} \mathrm{ft} / \mathrm{min}$
(D) $2 \pi \mathrm{ft} / \mathrm{min}$
(E) None of the above
_11. The value of $\frac{d^{2} y}{d x^{2}}$ in the equation $y^{2}+y=x$ at the point $(2,1)$ is:
(A) $\frac{-2}{27}$
(B) $\frac{1}{3}$
(C) $\frac{1}{5}$
(D) $\frac{-2}{125}$
(E) $\frac{1}{2}$
\qquad 12. If the graph of $y=a x^{3}+4 x^{2}+c x+d$ has a point of inflection at $(1,0)$, then the value of a is:
(A) 2
(B) $-\frac{4}{3}$
(C) $\frac{1}{2}$
(D) $\frac{8}{3}$
(E) None of these
13. The equation of the normal line to the curve $y=x^{4}+3 x^{3}+2$ at the point where $x=0$ is
(A) $y=x$
(B) $y=13 x$
(C) $y=0$
(D) $y=x+2$
(E) $x=0$
\qquad 14. If $y=\sin u, u=3 w$, and $w=e^{2 x}$, then $\frac{d y}{d x}=$
(A) $6 e^{2 x} \cos \left(3 e^{2 x}\right)$
(B) $3 \cos \left(e^{2 x}\right)$
(C) $e^{2 \cos \left(3 e^{2 x}\right)}$
(D) $-6 \sin \left(6 e^{2 x}\right)$
(E) $6 x \cos \left(e^{2 x}\right)$
-_ 15. $\frac{d}{d x}(\operatorname{Arccos} 3 x)=$
(A) $\frac{3}{\sqrt{1-x^{2}}}$
(B) $\frac{-1}{3 \sin 3 x}$
(C) $\frac{3}{\sqrt{1-3 x^{2}}}$
(D) $\frac{-3}{\sqrt{1-9 x^{2}}}$
(E) $\frac{3}{\sqrt{9 x^{2}-1}}$
16. If $f(x)=2 e^{x}+e^{2 x}$, then $f^{\prime \prime \prime}(0)=$
(A) 10
(B) 8
(C) 6
(D) 4
(E) 3
\qquad 17. Determine the absolute maximum value and the absolute minimum value of the function $f(x)=2 x^{3}+3 x^{2}-12 x$ over the interval $[-3,3]$.
(A) Absolute Maximum value is 20; Absolute Minimum value is -7
(B) Absolute Maximum value is 45; Absolute Minimum value is -7
(C) Absolute Maximum value is 3; Absolute Minimum value is 1
(D) Absolute Maximum value is -2 ; Absolute Minimum value is 1
(E) Absolute Maximum value is 45; Absolute Minimum value is 9
18. Given L feet of fencing, what is the maximum number of square feet that can be enclosed if the fencing is used to make three sides of a rectangular pen, using an existing wall as the fourth side?
(A) $\frac{L^{2}}{4}$
(B) $\frac{L^{2}}{8}$
(C) $\frac{L^{2}}{9}$
(D) $\frac{L^{2}}{16}$
(E) $\frac{2 L^{2}}{9}$
\qquad 19. If $y=\ln (\sin x)$, then $\frac{d y}{d x}=$
(A) $\frac{1}{\sin x}$
(B) $\ln (\sin x)$
(C) $\cot x$
(D) $\frac{1}{x} \sin x+\ln (\cos x)$
(E) $(\cos x) \ln (\sin x)$
20. A function f is defined by $f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ k & \text { if } x=2\end{cases}$

If f is continuous at $x=2$, what is the value of k ?
(A) 4
(B) -2
(C) 2
(D) 0
(E) $\frac{1}{2}$

II. Free Response

21. Prove the following derivative formula:

Given: $y=e^{x}$
Prove: $\frac{d y}{d x}=$
22. Using the delta-epsilon definition of a limit, Prove that the $\lim _{x \rightarrow 3} 2 x+4=10$
23. Write out the complete definition for continuity.
24. Determine $\frac{d y}{d x}$, given that $x^{2}+y^{2}=16$
25. Determine $\frac{d y}{d x}$, given that $x y+x^{2}=1607$
26. Determine $\frac{d y}{d x}$, given that $y=\left(4 x^{2}-5\right)^{10}$
27. Determine $\frac{d y}{d x}$, given that $y=\frac{x^{2}}{\cos (x)}$
28. Determine $\frac{d y}{d x}$, given that $x=3 t+1$ and $y=t^{2}+t$
29. Determine the domain of $y=\sqrt{\frac{x}{x+4}}$
30. Determine the equation of the tangent to the curve $\sin (y)=\cos (x)$ at the point $\left(\frac{\pi}{2}, 0\right)$.
31. A particle projected vertically upward with an initial velocity of $256 \mathrm{ft} / \mathrm{sec}$ reaches an elevation $s=256 t-16 t^{2}$ at the end of t seconds. How high does the particle rise?
32. For $x \neq 4$, the function $h(x)=\frac{x^{2}+x-20}{x-4}$. What value should be assigned to $h(4)$ to make $h(x)$ continuous at $x=4$?
\qquad 33. Determine the value of x if $f(x)=x^{2}$ and

$$
\mathrm{f}^{\prime}(f(x))+f\left(f^{\prime}(x)\right)=54
$$

34. If $y=\sin (2 x)$, determine the $50^{\text {th }}$ derivative of y with respect to x.
$\mathrm{a}=$
\qquad c=
35. The curve $y=a x^{2}+b x+c$ passes through the points $(2,5)$ and $(-2,-3)$. The value of y is greatest when $x=1$. Determine the values of a, b, and c.
36. Grain pouring from a chute at the rate of $6 \mathrm{ft}^{3} / \mathrm{min}$ forms a conical pile whose altitude is always twice its radius. How fast is the altitude of the pile changing when the radius is 4 feet?
37. Sketch a curve which satisfies the following conditions:

$$
\begin{array}{ll}
\frac{d y}{d x}>0 \text { on }(-\infty, 0) \text { and }(2,+\infty) & \frac{d y}{d x}<0 \text { on }(0,2) \tag{0,2}\\
\frac{d^{2} y}{d x^{2}}>0 \text { on }(1,+\infty) & \frac{d^{2} y}{d x^{2}}<0 \text { on }(-\infty, 1) \\
f(0)=4 & f(2)=0
\end{array} f(1)=18
$$

39. Given $f(1)=2, \quad f^{\prime}(1)=4$, and $g(x)=(f(x))^{-3}$

Determine $\left.\frac{d}{d x}(g(x))\right|_{x=1}$
40. Use differentials to determine the value of $\sqrt[3]{26}$.

