A. P. Calculus First Semester Examination Mr. Pleacher
Name \qquad A calculator is allowed on this section of the Exam.
I. Multiple Choice
\qquad 1. If $y^{2} x=4$, then $\frac{d y}{d x}=$
(A) $\frac{x^{2}}{y}$
(B) $\frac{2}{\sqrt{x}}$
(C) $\frac{-y}{2 x}$
(D) $\frac{-2 y}{x}$
(E) $4 x^{\frac{1}{2}} y$
\qquad 2. If the graph of $y=a x^{3}+4 x^{2}+c x+d$ has a point of inflection at $(1,0)$, then the value of a is:
(A) 2
(B) $-\frac{4}{3}$
(C) $\frac{1}{2}$
(D) $\frac{8}{3}$
(E) None of these
3. The equation of the normal line to the curve $y=x^{4}+3 x^{3}+2$ at the point where $x=0$ is
(A) $y=x$
(B) $y=13 x$
(C) $y=0$
(D) $y=x+2$
(E) $x=0$
_- 4. Given $g(1)=-2, \quad g^{\prime}(1)=-1$, determine the value of $\frac{d}{d x}\left(g^{3}(x)\right)$ when $x=1$.
(A) -12
(B) 0
(C) 6
(D) 12
(E) None of these
\qquad 5. The derivative of $y=12 x$ is
(A) x
(B) 12
(C) $12 x$
(D) 0
(E) None of these
\qquad 6. The second derivative of $y=8 x$ is
(A) 8
(B) $8 x$
(C) x
(D) 0
(E) None of these
__ 7. A bouncing ball loses $\frac{1}{4}$ of its previous height each time that it rebounds. If the ball is thrown up to a height of 60 feet, how many feet will it travel before coming to rest (including the 60 feet on the way up)?
(A) 480 feet
(B) 240 feet
(C) 160 feet
(D) 120 feet
(E) 80 feet
_ 8. $\frac{d}{d x}\left(\operatorname{Sin}^{-1}(2 x)\right)=$
(A) $\frac{-1}{2 \sqrt{1-4 x^{2}}}$
(B) $\frac{-2}{\sqrt{4 x^{2}-1}}$
(C) $\frac{1}{2 \sqrt{1-4 x^{2}}}$
(D) $\frac{2}{\sqrt{4 x^{2}-1}}$
(E) $\frac{2}{\sqrt{1-4 x^{2}}}$
\qquad 9. If $y=e^{n x}$, where n is a constant, then $\frac{d^{n} y}{d x^{n}}=$
(A) $n^{n} e^{n x}$
(B) $n!e^{n x}$
(C) $n e^{n x}$
(D) $n^{n} e^{n x-1}$
(E) $n!e^{x}$
10. Water flows at 8 cubic feet per minute into a cylinder with radius 4 feet. How fast is the water level rising?
(A) $2 \mathrm{ft} / \mathrm{min}$
(B) $\frac{1}{2 \pi} \mathrm{ft} / \mathrm{min}$
(C) $\frac{1}{\pi} \mathrm{ft} / \mathrm{min}$
(D) $2 \pi \mathrm{ft} / \mathrm{min}$
(E) None of the above
\qquad 11. The slope of the line tangent to the graph of $y=\ln \left(x^{2}\right)$ at $x=e^{2}$ is
(A) $\frac{2}{e^{2}}$
(B) $\frac{1}{e^{2}}$
(C) $\frac{4}{e^{2}}$
(D) $\frac{1}{e^{4}}$
(E) $\frac{4}{e^{4}}$
\qquad 12. With respect to the origin, point $(-4,1)$ is symmetric to
A $(4,1)$
B $(-4,-1)$
C $(4,-1)$
D $(1,-4)$
E $(1,4)$
_13. If $y=\csc (h(x))$, then $\frac{d y}{d x}=$
(A) $-\cot ^{2}(h(x))$
(B) $-\csc (h(x)) \cot (h(x)) h^{\prime}(x)$
(C) $-\cot ^{2}(h(x)) h^{\prime}(x)$
(D) $-\sec (h(x)) \cot (h(x)) h^{\prime}(x)$
(E) None of these
14. Determine the equation of the tangent line to the graph of $y=f(x)$ at the point where $x=-3$ if $f(-3)=2$ and $f^{\prime}(-3)=5$.
(A) $y=-3$
(B) $y=5 x+2$
(C) $y=2 x+5$
(D) $y=5 x+17$
(E) It cannot be determined from this information.
15. $\frac{d}{d x}(\operatorname{Arccos} 3 x)=$
(A) $\frac{3}{\sqrt{1-x^{2}}}$
(B) $\frac{-1}{3 \sin 3 x}$
(C) $\frac{-3}{\sqrt{1-9 x^{2}}}$
(D) $\frac{3}{\sqrt{1-3 x^{2}}}$
(E) $\frac{3}{\sqrt{9 x^{2}-1}}$
\qquad 16. If $f(x)=2 e^{x}+e^{2 x}$, then $f^{\prime \prime \prime}(0)=$
(A) 12
(B) 10
(C) 6
(D) 4
(E) 3
\qquad 17. Determine the absolute maximum value and the absolute minimum value of the function $f(x)=2 x^{3}+3 x^{2}-12 x$ over the interval $[-3,3]$.
(A) Absolute Maximum value is 45; Absolute Minimum value is -7
(B) Absolute Maximum value is 20; Absolute Minimum value is -7
(C) Absolute Maximum value is 3; Absolute Minimum value is 1
(D) Absolute Maximum value is -2 ; Absolute Minimum value is 1
(E) Absolute Maximum value is 45; Absolute Minimum value is 9
18. In proving that $\lim _{x \rightarrow 2} 3 x=6$, what is the largest value of δ corresponding to $\varepsilon>0$ such that $|3 x-6|<\varepsilon$ whenever $|\mathrm{x}-2|<\delta$?
(A) ε
(B) $\frac{\varepsilon}{2}$
(C) $\frac{\varepsilon}{3}$
(D) $\frac{\varepsilon}{6}$
(E) 2ε
19. If $y=\ln (\sin x)$, then $\frac{d y}{d x}=$
(A) $\frac{1}{\sin x}$
(B) $\ln (\sin x)$
(C) $\frac{1}{x} \sin x+\ln (\cos x)$
(D) $(\cos x) \ln (\sin x)$
(E) $\cot x$
20. A function f is defined by $f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ k & \text { if } x=2\end{cases}$

If f is continuous at $x=2$, what is the value of k ?
(A) -2
(B) 0
(C) 2
(D) 4
(E) $\frac{1}{2}$

II. Free Response

21. Prove the following derivative formula:

Given: $y=a^{x}$, where a is a constant
Prove: $\frac{d y}{d x}=$
22. Given L feet of fencing, what is the maximum number of square feet that can be enclosed if the fencing is used to make three sides of a rectangular pen, using an existing wall as the fourth side?
23. Given $f(1)=2, f^{\prime}(1)=4$, and $g(x)=(f(x))^{-3}$

Determine $\left.\frac{d}{d x}(g(x))\right|_{x=1}$
24. At what points on the graph of $y=\frac{4}{x-1}$ is the slope equal to -1 ?
25. Determine $\frac{d y}{d x}$, given that $y \sin x+x \sin y=1066$
26. Determine $\frac{d y}{d x}$, given that $y=\cos ^{2} x+\sin ^{2} x$
27. Determine $\frac{d y}{d x}$, given that $x y+y^{2}=2001$
28. Determine $\frac{d y}{d x}$, given that $y=\frac{x^{2}}{\sin (x)}$
29. Determine $\frac{d y}{d x}$, given that $y=u^{2}+1$ and $u=3 x-5$
30. Determine the domain of $y=\sqrt{\frac{x}{x-2}}$
31. Determine the equation of the tangent to the curve $\sin (y)=\cos (x)$ at the point $\left(\frac{\pi}{2}, 0\right)$.
32. A particle projected vertically upward with an initial velocity of $128 \mathrm{ft} / \mathrm{sec}$ reaches an elevation $s=128 t-16 t^{2}$ at the end of t seconds. How high does the particle rise?
(SHOW WORK
33. Is the function $f(x)$ continuous at $x=0$?

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin (x)}{x} & \text { when } x \neq 0 \\
2 & \text { when } x=0
\end{array}\right.
$$

PROVE your answer:
\qquad 34. Determine the value of x if $f(x)=x^{2}$ and

$$
\mathrm{f}^{\prime}(f(x))+f\left(f^{\prime}(x)\right)=54
$$

35. If $y=(x+1)^{-2}$, determine the $100^{\text {th }}$ derivative of y with respect to x.
$\mathrm{a}=$
$\mathrm{b}=$
\qquad
$\mathrm{c}=$
\qquad 36. The curve $y=a x^{2}+b x+c$ passes through the points $(2,5)$ and $(-2,-3)$. The value of y is greatest when $x=1$. Determine the values of a, b, and c.
36. If the surface area of a sphere is increasing at the rate of 12 square feet per second, how fast is the radius increasing when it is 2 feet?
37. Write out the complete definition for continuity.
38. Sketch a curve which satisfies the following conditions:

$$
\begin{array}{ll}
\frac{d y}{d x}>0 \text { on }(-\infty, 0) \text { and }(2,+\infty) & \frac{d y}{d x}<0 \text { on }(0,2) \tag{0,2}\\
\frac{d^{2} y}{d x^{2}}>0 \text { on }(1,+\infty) & \frac{d^{2} y}{d x^{2}}<0 \text { on }(-\infty, 1) \\
f(0)=4 & f(2)=0
\end{array} f(1)=18
$$

