A.P. Calculus Test Chapter 2 Limits and Continuity Name \qquad
I. Multiple Choice

1. If $f(x)=\frac{x-1}{x}$ and $g(x)=1-x$ Then $f(g(x))=$
(A) $\frac{-x}{1-x}$
(B) $\frac{1}{1-x}$
(C) $\frac{1-x}{x-1}$
(D) $\frac{1}{x}$
(E) $\frac{x}{1-x}$
__ 2. For $x \neq 4$, the function $\mathrm{h}(\mathrm{x})$ is equal to $\frac{x^{2}+x-20}{x-4}$. What value should be assigned to $\mathrm{h}(4)$ to make $\mathrm{h}(\mathrm{x})$ continuous at $\mathrm{x}=4$?
(A) -1
(B) 0
(C) 5
(D) 9
(E) 20
\qquad 3. In proving that $\lim _{x \rightarrow 10} 2 x=20$, determine the value of δ, given that $\varepsilon=0.01$.
(A) 0.01
(B) 0.005
(C) 0.05
(D) 0.0025
(E) 0.00005
\qquad 4. A bouncing ball loses $\frac{1}{4}$ of its previous height each time that it rebounds. If the ball is thrown up to a height of 60 feet, how many feet will it travel before coming to rest (including the 60 feet on the way up)?
(A) 480
(B) 240
(C) 160
(D) 120
(E) 80
\qquad 5. $\lim _{x \rightarrow 6} 7=$
(A) 1
(B) 6
(C) 7
(D) -7
(E) Does not exist
-6. $\lim _{x \rightarrow 3} \frac{x}{x-3}=$
(A) 1
(B) 0
(C) $+\infty$
(D) $-\infty$
(E) Does not exist
\qquad 7. Determine the points of discontinuity of $f(x)=\frac{3}{x}+\frac{2 x}{x-4}$
(A) $\mathrm{x}=0$ only
(B) $x=-4$ only
(C) $x=4$ only
(D) $x=0,4$
(E) No points of discontinuity
2. $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x+3}{6-4 x^{2}-3 x^{3}}=$
(A) $\frac{1}{3}$
(B) $\frac{1}{6}$
(C) $-\frac{1}{3}$
(D) 3
(E) Does not exist
II. Definitions

Write out complete definitions for each of the following on your own paper:
9. Limit
10. Continuity
III. Determine the limits of the following functions, showing all work on your own paper
11. $\lim _{\theta \rightarrow 0}\left(\frac{\sin (5 \theta)}{\theta}\right)=$
12. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3}{5-x}=$
13. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3}{5-x^{3}}=$
14. $\lim _{x \rightarrow 3}(2 x-5)=$
15. $\lim _{x \rightarrow 3}\left(\frac{2 x^{2}-3 x-9}{x-3}\right)=$
16. $\lim _{\theta \rightarrow 0}\left(\frac{\sin (6 \theta)}{\sin (5 \theta)}\right)=$
17. $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=$
18. $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{4 x^{2}}=$
IV. Miscellaneous
19. Given $f(x)= \begin{cases}x^{2}-2, & \text { if } x \leq 0 \\ 3 x+k, & \text { if } x>0\end{cases}$

Find the value for the constant k that will make the function continuous at $\mathrm{x}=0$.
20. Is the function $\mathrm{h}(\mathrm{x})$ continuous at $\mathrm{x}=0$? Prove your answer.

$$
h(x)= \begin{cases}\frac{\sin (x)}{x}, & \text { when } x \neq 0 \\ 2, & \text { when } x=0\end{cases}
$$

21. Using the $\delta-\varepsilon$ definition of the limit, prove that $\lim _{x \rightarrow 3}(4 x-5)=7$.

V. Graphs

Graph each of the following on your own paper (or graph paper):
22. Draw the graph of a function $\mathrm{h}(\mathrm{x})$ whose limit as x approaches 5 exists, but $h(5)$ is not defined.
23. Graph $y=[x]+2$
24. Graph $y=|x|$
25. Graph $f(x)= \begin{cases}x+2, & x \leq 3 \\ -2, & x>3\end{cases}$

Extra Credit (4 points)

26. Determine the limit, showing all work:

$$
\lim _{x \rightarrow 2^{+}}\left(\frac{2+5 x-3 x^{2}}{|2-x|}\right)=
$$

