A.P. Calculus Test Chapter 2 Limits and Continuity Name \qquad
I. Multiple Choice

1. If $f(x)=\frac{x-1}{x}$ and $g(x)=1-x$ Then $g(f(x))=$
(A) $\frac{-x}{1-x}$
(B) $\frac{1}{1-x}$
(C) $\frac{1-x}{x-1}$
(D) $\frac{1}{x}$
(E) $\frac{x}{1-x}$
__ 2. For $x \neq 4$, the function $\mathrm{h}(\mathrm{x})$ is equal to $\frac{x^{2}+x-20}{x-4}$. What value should be assigned to $\mathrm{h}(4)$ to make $\mathrm{h}(\mathrm{x})$ continuous at $\mathrm{x}=4$?
(A) 20
(B) 9
(C) 5
(D) 0
(E) -1
\qquad 3. In proving that $\lim _{x \rightarrow 10} 2 x=20$, determine the value of δ, given that $\varepsilon=0.1$.
(A) 0.01
(B) 0.005
(C) 0.05
(D) 0.0025
(E) 0.00005
\qquad 4. A ball is dropped from a height of 1 meter. It always bounces to one-half its previous height. The ball will bounce infinitely but it travel a finite distance. What is the distance?
(A) 4 m
(B) 3 m
(C) $2 \frac{31}{32} \mathrm{~m}$
(D) 2 m
(E) It can not be determined
\qquad 5. $\lim _{x \rightarrow 6} 4=$
(A) 4
(B) 6
(C) 0
(D) -4
(E) Does not exist
-6. $\lim _{x \rightarrow 3} \frac{x}{x-3}=$
(A) 1
(B) 0
(C) $+\infty$
(D) $-\infty$
(E) Does not exist
\qquad 7. Determine the points of discontinuity of $f(x)=\frac{3}{x}+\frac{2 x}{x+4}$
(A) $x=0$ only
(B) $x=-4$ only
(C) $x=-4,0$
(D) $x=0,4$
(E) No points of discontinuity
_- $8 . \lim _{x \rightarrow \infty} \frac{x^{3}-2 x+3}{6-4 x^{2}+3 x^{3}}=$
(A) $\frac{1}{3}$
(B) $\frac{1}{6}$
(C) $-\frac{1}{3}$
(D) 3
(E) Does not exist
II. Definitions

Write out complete definitions for each of the following on your own paper:
9. Limit
10. Continuity
III. Determine the limits of the following functions, showing all work on your own paper
11. $\lim _{\theta \rightarrow 0}\left(\frac{\sin (8 \theta)}{\theta}\right)=$
12. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3}{5-x^{3}}=$
13. $\lim _{x \rightarrow-\infty} \frac{2 x^{4}-3}{5-x^{3}}=$
14. $\lim _{x \rightarrow 3}(4 x-5)=$
15. $\lim _{x \rightarrow-4}\left(\frac{x^{3}+64}{x+4}\right)=$
16. $\lim _{\theta \rightarrow 0}\left(\frac{\sin (7 \theta)}{\sin (2 \theta)}\right)=$
17. $\lim _{x \rightarrow 0} \frac{5 \sin ^{2} x}{2 x^{2}}=$
18. $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=$
IV. Miscellaneous
19. Given $f(x)= \begin{cases}2 x-5, & \text { if } x \leq 2 \\ k x+3, & \text { if } x>2\end{cases}$

Find the value for the constant k that will make the function continuous at $x=2$.
20. Is the function $h(x)$ continuous at $x=0$? Prove your answer.

$$
h(x)= \begin{cases}\frac{\sin (x)}{x}, & \text { when } x \neq 0 \\ 1, & \text { when } x=0\end{cases}
$$

21. Using the $\delta-\varepsilon$ definition of the limit, prove that $\lim _{x \rightarrow 3}(5 x-5)=10$.

V. Graphs

Graph each of the following on your own paper (or graph paper):
22. Draw the graph of a function $\mathrm{h}(\mathrm{x})$ whose limit as x approaches 5 does not exist, but $h(5)$ is defined to be 3 .
23. Graph $y=|x|-2$
24. Graph $y=[x]$
25. Graph $f(x)= \begin{cases}-x+2, & x \leq 1 \\ x-2, & x>1\end{cases}$

Extra Credit (4 points)

26. Determine the limit, showing all work:

$$
\lim _{x \rightarrow 2^{+}}\left(\frac{2+5 x-3 x^{2}}{|2-x|}\right)=
$$

