

I. Multiple Choice

___ 1. Determine f'(x) if $f(x) = \sin(x) \cot(x)$

- (A) $\cos x$ (B) $-\sin x$
- (C) $\sin x$
- (D) $-\cos x$
- (E) 0

2. Given $y = f(x) = 2x^3$, determine the average rate of change of y with respect to x over the interval [1, 3].

- (A) 52
- (B) -52
- (C) 26
- (D) -26
- (E) 0

_____ 3. An object moves in a straight line so that after t seconds its distance in feet from its original position is given by $s = t^4$. Its instantaneous velocity at t = 4 seconds is (C) 12 feet

- (A) 192 feet
- (B) 256 feet
- (D) 16 feet
- (E) 32 feet

_____ 4. If $y = x^6$, $\frac{dy}{dx} =$

- (A) $6x^6$ (B) $6x^5$ (C) $5x^5$ (D) $5x^6$ (E) x^5

_____ 5. If $u = 3x^2 - 93$, then $\frac{du}{dx} =$

- (A) 6u (B) 6x (C) 6x 93 (D) 6
- (E) 0

_____ 6. If $f(x) = \pi^2$, then f'(x) =

- (A) 0 (B) 2π (C) π (D) 1 (E) π^2

_____ 7. Given $y = \sqrt{x}$ Determine $\frac{dy}{dx}$

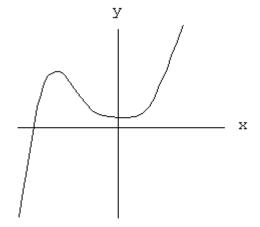
- (A) $\frac{1}{2\sqrt{x}}$ (B) $\frac{1}{2}\sqrt{x}$ (C) $\frac{1}{2x}$ (D) $\frac{1}{2}x^{-1}$ (E) $\frac{1}{2}x$

_____ 8. The area of a circle is given by $A = \pi r^2$.

Assuming that the radius is changing, the formula for the instantaneous rate of Change of A with respect to r is:

- (A) πr
- (B) 0
- (C) 2π
- (D) $2\pi r$ (E) $2\pi r^3$

_____ 9. If
$$y = \frac{1}{x}$$


9. If
$$y = \frac{2x}{x-2}$$
, $\frac{dy}{dx}\Big|_{x=1} =$
(A) 3 (B) -3 (C) 4

- 10. Determine the value of k so that the line y = 2x is tangent to the curve $y = x^2 + k$.
 - (A) -1
- (B) 0
- (C) 1
- (D) 2
- (E) None of these answers

II. Free Response

Do ALL work on your own paper.

11. Sketch the graph of the derivative of the function whose graph is shown below:

- 12. Given $g(x) = \sqrt{x} f(x)$. Determine g'(1) given that f(1) = 8 and f'(1) = 5.
- 13. Determine $\frac{d^2y}{dx^2}$ if $y = x \cos x$.
- 14. If $y = \sin(x)$, Determine $\frac{d^{105}y}{dx^{105}}$.
- 15. Determine the equation of the line tangent to the graph of y = f(x) at the point where $\mathbf{x} = -3$ if f(-3) = 2 and f'(-3) = 5.

16 - 17. Given the function
$$g(x) = \frac{x-1}{2x+4}$$
.

16. Determine
$$\frac{d}{dx}(g(x))$$

- 17. Write the equation of the line tangent to g(x) at the point where x = -1.
- 18. Given $y = x^6$, Determine y'''(1).
- 19. Write out a complete definition of the derivative.
- 20. Given $y = x^2 + 5x$, use the definition of the derivative to determine $\frac{dy}{dx}$.

21. Extra Credit:

A small water balloon was projected vertically upward by a disgruntled calculus student with an initial velocity of 160 ft/sec. It reaches an elevation of $s = 160t - 16t^2$ feet at the end of t seconds. How high does the balloon rise? When would it hit the calculus teacher who just happens to be walking by a few seconds later and who is 6 feet tall?