\qquad
I. Multiple Choice
\qquad 1. Determine $f^{\prime}(x)$ if $f(x)=\tan (x) \cos (x)$
(A) $\cos x$
(B) $-\sin x$
(C) $\sin x$
(D) $-\cos x$
(E) 0
\qquad 2. Given $y=f(x)=2 x^{3}$, determine the average rate of change of y with respect to x over the interval $[1,3]$.
(A) 52
(B) -52
(C) -26
(D) 26
(E) 0
\qquad 3. An object moves in a straight line so that after t seconds its distance in mm from its original position is given by $s=t^{2}+t$. Its instantaneous velocity at $t=3$ seconds is
(A) 18 mm
(B) 19 mm
(C) 12 mm
(D) 7 mm
(E) 0 mm
\qquad 4. If $y=x^{6}, \frac{d y}{d x}=$
(A) $6 x^{6}$
(B) $5 x^{5}$
(C) $6 x^{5}$
(D) $5 x^{6}$
(E) x^{5}
-5. If $u=3 x^{2}-93$, then $\frac{d u}{d x}=$
(A) 0
(B) $6 u$
(C) $6 x-93$
(D) 6
(E) $6 x$
\qquad 6. If $f(x)=18-\pi$, then $f^{\prime}(x)=$
(A) 18π
(B) 0
(C) π
(D) -1
(E) $-\pi$
\qquad 7. Given $y=\sqrt{x}$ Determine $\frac{d y}{d x}$
(A) $\frac{1}{2} \sqrt{x}$
(B) $\frac{1}{2 \sqrt{x}}$
(C) $\frac{1}{2 x}$
(D) $\frac{1}{2} x^{-1}$
(E) $\frac{1}{2} x$
\qquad 8. The volume of a sphere is given by the formula $V=\frac{4}{3} \pi r^{3}$.

Assuming that the radius is changing, the formula for the instantaneous rate of change of V with respect to r is:
(A) $\frac{4}{3} \pi r^{2}$
(B) $4 \pi r^{2}$
(C) $12 \pi r^{2}$
(D) $4 \pi r^{2}+\frac{4}{3} r^{3}$
(E) $2 \pi r^{3}$
-_ 9. If $y=\frac{2 x}{x-2},\left.\frac{d y}{d x}\right|_{x=1}=$
(A) -4
(B) -3
(C) 4
(D) 3
(E) 0
10. Determine the value of k so that the line $y=2 x$ is tangent to the curve $y=x^{2}+k$.
(A) 2
(B) 0
(C) -1
(D) 1
(E) None of these answers

II. Free Response

Do ALL work on your own paper.
11. Sketch the graph of the derivative of the function whose graph is shown below:

12. Given $g(x)=\sqrt{x} f(x)$. Determine $g^{\prime}(1)$ given that $f(1)=3$ and $f^{\prime}(1)=4$.
13. Determine $\frac{d^{2} y}{d x^{2}}$ if $y=x \sin x$.
14. If $y=\cos (x)$, Determine $\frac{d^{102} y}{d x^{102}}$.
15. Determine the equation of the line tangent to the graph of $y=f(x)$ at the point where $\mathbf{x}=-3$ if $f(-3)=4$ and $f^{\prime}(-3)=-2$.

16-17. Given the function $g(x)=\frac{x-1}{2 x+4}$.
16. Determine $\frac{d}{d x}(g(x))$
17. Write the equation of the line tangent to $g(x)$ at the point where $x=-1$.
18. Given $y=x^{5}$, Determine $y^{\prime \prime \prime}(1)$.
19. Write out a complete definition of the derivative.
20. Given $y=x^{2}-2 x$, use the definition of the derivative to determine $\frac{d y}{d x}$.

21. Extra Credit:

A small water balloon was projected vertically upward by a disgruntled calculus student with an initial velocity of $160 \mathrm{ft} / \mathrm{sec}$. It reaches an elevation of $s=160 t-16 t^{2}$ feet at the end of t seconds. How fast is it traveling at $\mathrm{t}=3$ seconds? When would it hit the calculus teacher who just happens to be walking by a few seconds later and who is 6 feet tall?

