Test A. P. Calculus Sections 6.1-6.6 Name \qquad
1-6. Multiple Choice
\qquad 1. $\int d t=$
(A) $t+C$
(B) $x+C$
(C) $t x+C$
(D) $\frac{1}{2} t^{2}+C$
(E) $d t+C$
\qquad 2. $\int(\sin x-3 \cot x \sin x) d x=$
(A) $\cos x+3 \csc x+K$
(B) $\cos x+3 \sin x+K$
(C) $-\cos x-3 \sin x+K$
(D) $-\cos x+3 \csc x+K$
(E) None of the above
3. $\int x \sqrt{9-x^{2}} d x=$
(A) $\frac{3}{2} x^{2}-\frac{1}{3} x^{3}+K$
(B) $\frac{3}{2} x^{2}-x^{3}+K$
(C) $-\frac{1}{2}\left(\left(9-x^{2}\right)^{\frac{3}{2}}\right)+K$
(D) $\frac{\left(9-x^{2}\right)^{\frac{3}{2}}}{3}+K$
(E) $-\frac{1}{3}\left(\sqrt{9-x^{2}}\right)^{3}+K$
\qquad 4. Suppose that you approximate the area under $g(x)=\sin (x)+2$ on the domain $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$ with $\mathrm{n}=4$ subintervals, using right-hand endpoints. The set of x-values you need to use are:
(A) $\left\{0, \frac{\pi}{4}, \frac{2 \pi}{4}, \frac{3 \pi}{4}\right\}$
(B) $\left\{\frac{\pi}{4}, \frac{2 \pi}{4}, \frac{3 \pi}{4}, \frac{4 \pi}{4}\right\}$
(C) $\left\{\frac{2 \pi}{4}, \frac{3 \pi}{4}, \frac{4 \pi}{4}, \frac{5 \pi}{4}\right\}$
(D) $\left\{\frac{3 \pi}{4}, \frac{4 \pi}{4}, \frac{5 \pi}{4}, \frac{6 \pi}{4}\right\}$
(E) Not enough information was given
5. $\sum{k=1}^{4}\left(k^{2}+1\right)=$
(A) 14
(B) 29
(C) 30
(D) 34
(E) None of the above

- 6. If $\frac{d y}{d x}=x y^{3}$ and $y=1$ when $x=1$, then determine the value of y when $x=0$. Hint: First, solve the differential equation.
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) $\pm \frac{2}{3}$
(D) $\pm \frac{\sqrt{2}}{2}$
(E) $\pm \sqrt{2}$

7-16. Free Response SHOW ALL WORK on your own paper - Do NOT write on the test paper for any problems in this section except for \#16.
7. If the points a, b, c, and d are located on the x-axis such that $a<b<c<d$ and if $\int_{a}^{\mathrm{b}} f(x) d x=5$ and $\int_{c}^{\mathrm{d}} f(x) d x=8$ and $\int_{a}^{\mathrm{d}} f(x) d x=9$
Determine the value of $\int_{c}^{\mathrm{b}} f(x) d x$
8. Determine the exact area between the curve $y=x^{2}$ and the x-axis over the interval $0 \leq x \leq 4$. Use circumscribed rectangles (right-hand endpoints in this problem) and apply a limit.

You will need to apply one of the following:

$$
\begin{aligned}
& 1+2+3+\ldots+n=\frac{n(n+1)}{2} \\
& 1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

9. Determine the area between the curve $y=x^{2}-1$ and the x-axis from $x=0$ to $x=4$.
10. Evaluate $\int_{1}^{3} \frac{(x+2) d x}{\sqrt{x^{2}+4 x+7}}=$
11. Evaluate $\int_{-\pi}^{\frac{\pi}{4}} \cos (2 x) d x=$
12. Evaluate $\int_{0}^{1} \frac{x d x}{3 x^{2}+1}=$
13. Evaluate $\int_{1}^{4}|2 x-4| d x=$

You must show ALL WORK, and you must use calculus to solve!
14. Prove by induction: $1+3+5+7+\ldots+(2 n-1)=n^{2}$
15. Solve the differential equation $\frac{d y}{d x}=2+\sin (3 x)$, given that $y\left(\frac{\pi}{3}\right)=0$
16. Draw a slope field for the differential equation $\frac{d y}{d x}=-\frac{x}{y}$

Extra Credit (5 points)
Evaluate $\prod_{i=2}^{5}(2 i-3)=$

