No calculators are allowed on this test. Leave answers in radical form and in terms of π . Go through and set up all the free response problems. Then, and only then, go back and solve the problems.

I. Multiple Choice

_____ 1. What is the area of the region completely bounded by the curve $y = -x^2 + x + 6$ and the line y = 4?

- (A) $\frac{3}{2}$ (B) $\frac{9}{2}$ (C) $\frac{7}{3}$ (D) $\frac{31}{6}$ (E) $\frac{33}{2}$

2. The region in the first quadrant bounded by the graph of $y = \sec(x)$, $x = \frac{\pi}{4}$, and the axes is rotated about the x-axis. What is the volume of the solid generated?

- (A) $\frac{\pi^2}{4}$ (B) $\pi 1$ (C) π (D) 2π (E) $\frac{8\pi}{3}$

3. The area of the region bounded by the lines x = 0, x = 2, and y = 0, and the curve $y=e^{\left(\frac{x}{2}\right)}$ is

- (A) $\frac{e-1}{2}$
- (B) e-1
- (C) 2e-1
- (D) 2(e-1)
- (E) 2e

II. Free Response

- 4. Determine the area of the region bounded by $y = 2 x^2$ and y = |x|.
- 5. Determine the area of the region bounded by $x = y^2$ and y = x 2.
- 6. Determine the length of the curve $y = 2x^{\frac{3}{2}}$ from x = 0 to x = 1.
- 7. The region bounded by the x-axis, y-axis, and the portion of the curve $y = \sqrt{9 x^2}$ in the first quadrant is revolved around the x-axis. Determine the volume of this solid of revolution.
- 8. Determine the volume of the solid obtained by revolving the region bounded by $y = \sqrt{x}$, x = 9, and y = 0 about the y-axis.
- 9. Determine the volume of the solid obtained by revolving the region in the first quadrant bounded by $y = x^2$, the x-axis, and x = 3 about the line x = 3.
- 10. Determine the volume of the solid obtained by revolving the region bounded by $y = \sqrt{x}$, the x-axis, and the line x = 9 about the line x = -1. Set up but do not integrate the integral.