Test Chapter 5 Curve Sketching Name \qquad
Show all work on your own paper.
Do NOT write anywhere on this test except for question \#1. You may NOT use a calculator on this test.

1. Give the following information for the function:

$$
y=x^{4}+4 x^{3}
$$

Derivative: \qquad
Increasing on (__ , __) and (__ , __)
Decreasing on (_ , __)
Relative Minimum at (___ , _)
Second Derivative: \qquad
Concave Up on (__ , __) and (___)
Concave Down on (_ , ___)
Points of Inflection at (__ , __) and (_ , __)
2. Sketch the function which is
increasing on $(-\infty, 0)$ and (2, $+\infty$),
decreasing on (0,2),
concave up on ($1,+\infty$),
Concave down on ($-\infty, 1$),
and has a
relative maximum at (0, 4), relative minimum at (2, 0), point of inflection at (1, 1).
3. Sketch a curve that satisfies the following conditions:

$$
\begin{array}{ll}
\frac{d y}{d x}<0 \text { on }(-\infty, 0) \text { and }(2,+\infty) & \frac{d y}{d x}>0 \text { on }(0,2) \\
\frac{d^{2} y}{d x^{2}}<0 \text { on }(1,+\infty) & \frac{d^{2} y}{d x^{2}}>0 \text { on }(-\infty, 1) \\
f(0)=0 & f(2)=4
\end{array}
$$

4. Sketch $y=f(x)$, given that

$$
\begin{aligned}
& f(1)=-3 \\
& f^{\prime \prime}(x)>0 \text { for } x<1 \\
& f^{\prime \prime}(x)<0 \text { for } x>1
\end{aligned}
$$

5-7. Sketch the following curves, indicating relative maximum and relative minimum points.
5. Sketch $y=6-2 x-x^{2}$
6. Sketch $y=12-12 x+x^{3}$
7. Sketch $y=-x^{4}+4 x^{2}+8$
8. In sketching a curve, how does finding the second derivative help?
9. Find the interval(s) of x for which the function f defined by $f(x)=\left(x^{2}-3\right) e^{-x}$ is increasing.
10. Determine the constant k so that the function $f(x)=x^{2}+\frac{k}{x}$ will have a point of inflection at $x=1$.

