Do NOT write anywhere on this test except for question #1. You may NOT use a calculator on this test.

1. Give the following information for the function:

 $y = x^4 + 4x^3$

2.

3.

Derivative: _		
Increasing or	ı (,)) and (,)
Decreasing or	ı (,)	
Relative Mini	imum at (,)
Second Deriva	ative:	
Concave Up on (,) and (,)		
Concave Down	on (,)
Points of Inf	lection at(_ ,) and (,)
Sketch the fund increasing or decreasing or concave up or Concave down and has a relative maxi relative mini point of infl	tion which is $(-\infty, 0)$ and ((0, 2), $(1, +\infty),$ on $(-\infty, 1),$ imum at $(0, 4),$ imum at $(2, 0),$ lection at $(1, 1)$	2, +∞), _).
Sketch a curve	that satisfies	the following conditions:
$\frac{dy}{dx} < 0$ on $(-\infty, 0)$) and $(2, +\infty)$	$\frac{dy}{dx} > 0 \text{on} (0, 2)$
$\frac{d^2 y}{dx^2} < 0 \text{on} (1, +\infty)$	o)	$\frac{d^2 y}{dx^2} > 0 \text{on} (-\infty, 1)$
f(0) = 0	f(2) = 4	f(1) = 1

4. Sketch y = f(x), given that

f(1) = -3 f''(x) > 0 for x < 1f''(x) < 0 for x > 1

- 5 7. Sketch the following curves, indicating relative maximum and relative minimum points.
- 5. Sketch $y = 6 2x x^2$
- 6. Sketch $y = 12 12x + x^3$

7. Sketch
$$y = -x^4 + 4x^2 + 8$$

- 8. In sketching a curve, how does finding the second derivative help?
- 9. Find the interval(s) of x for which the function f defined by $f(x) = (x^2 3)e^{-x}$ is increasing.
- 10. Determine the constant k so that the function $f(x) = x^2 + \frac{k}{x}$ will have a point of inflection at x = 1.