Test Curve Sketching Name \qquad
Show all work on your own paper.
Do NOT write anywhere on this test except for question \#1. You may NOT use a calculator on this test.

1. Give the following information for the function:

$$
y=x^{3}-3 x^{2}+4
$$

Derivative: \qquad
Increasing on (__ , __) and (__ , __)
Decreasing on (_ , __)
Relative Maximum at (___ , _)
Relative Minimum at (_ , __)
Second Derivative: \qquad
Concave Up on (___ , _)
Concave Down on (_ , ___)
Points of Inflection at (_ , ___)
2. Sketch a curve that satisfies the following conditions:

$$
\begin{array}{ll}
\frac{d y}{d x}>0 \text { on }(-\infty, 0) \text { and }(2,+\infty) & \frac{d y}{d x}<0 \text { on }(0,2) \\
\frac{d^{2} y}{d x^{2}}>0 \text { on }(1,+\infty) & \frac{d^{2} y}{d x^{2}}<0 \text { on }(-\infty, 1) \\
f(0)=4 & f(2)=0
\end{array}
$$

3. Sketch the function $y=f(x)$, given that

$$
f(1)=0
$$

$$
f^{\prime}(x)>0 \text { for } x<1
$$

$$
f^{\prime}(x)<0 \text { for } x>1
$$

4. Sketch the curve with the following properties:
y-axis symmetry
horizontal asymptote: y = 0
vertical asymptotes: $x=-2, x=2$
increasing on (0, 2) and (2, $+\infty$)
decreasing on $(-\infty,-2)$ and $(-2,0)$
concave up on (-2, 2)
concave down on $(-\infty,-2)$ and $(2,+\infty)$
$f(0)=2$
5-7. Sketch the following curves, indicating relative maximum and relative minimum points.
5. Sketch $y=x^{4}-2 x^{2}+5$
6. Sketch $y=x^{4}+4 x^{3}$
7. Sketch $y=12-12 x+x^{3}$
8. In sketching a curve, how does finding the first derivative help?
9. Find the interval(s) of x for which the function f defined by $f(x)=\left(x^{2}-3\right) e^{-x}$ is decreasing.
10. Determine the constant k so that the function $f(x)=x^{2}+\frac{k}{x}$ will have a relative minimum at $x=2$.
