Test	Curve	Sketching	Name	
ICBC	CULVC	DIRCCCITTING	IVALLIC	

Show all work on your own paper.

Do NOT write anywhere on this test except for question #1. You may NOT use a calculator on this test.

1. Give the following information for the function:

$$y = x^3 - 3x^2 + 4$$

Derivative: _____

Increasing on (___ , ___) and (___ , ___)

Decreasing on (____ , ___)

Relative Maximum at (____ , ___)

Relative Minimum at (____ , ___)

Second Derivative: _____

Concave Up on (____ , ____)

Concave Down on (____ , ____)

Points of Inflection at(___ , ___)

2. Sketch a curve that satisfies the following conditions:

$$\frac{dy}{dx} > 0$$
 on $(-\infty, 0)$ and $(2, +\infty)$ $\frac{dy}{dx} < 0$ on $(0, 2)$

$$\frac{d^2 y}{dx^2} > 0 \text{ on } (1, +\infty)$$

$$\frac{d^2 y}{dx^2} < 0 \text{ on } (-\infty, 1)$$

$$f(0) = 4$$
 $f(2) = 0$ $f(1) = 1$

3. Sketch the function y = f(x), given that

$$f(1) = 0$$

$$f'(x) > 0$$
 for $x < 1$

$$f'(x) < 0 \text{ for } x > 1$$

4. Sketch the curve with the following properties: y-axis symmetry

horizontal asymptote: y = 0

vertical asymptotes: x = -2, x = 2

increasing on (0, 2) and $(2, +\infty)$

decreasing on $(-\infty, -2)$ and (-2, 0)

concave up on (-2, 2)

concave down on $(-\infty, -2)$ and $(2, +\infty)$

f(0) = 2

- $\frac{5-7.}{}$ Sketch the following curves, indicating relative maximum and relative minimum points.
- 5. Sketch $y = x^4 2x^2 + 5$
- 6. Sketch $y = x^4 + 4x^3$
- 7. Sketch $y = 12 12x + x^3$
- 8. In sketching a curve, how does finding the first derivative help?
- 9. Find the interval(s) of x for which the function f defined by $f(x) = (x^2 3)e^{-x}$ is decreasing.
- 10. Determine the constant k so that the function $f(x) = x^2 + \frac{k}{x} \text{ will have a relative minimum at } x = 2.$