Slot Car Racing - An application of Circumference

by Eugene Krauss, University of Michigan in the May 1992 Mathematics Teacher

Slot car racing is an application that requires no advanced mathematics -- just the formula for the circumference of a circle. Youngsters are familiar with the small electrically powered cars that race along parallel slots in track sections that can be assembled in a variety of ways. The figures below show some possible layouts. Notice that the curved track sections can be joined to form quarter-circles and semicircles of different radii and that overpasses/underpasses are possible.

Question \#1: In the simple track layout shown below (figure 1), what head start should the car in the dotted slot be allowed? The slots are 4 centimeters apart.

Solution: Straightaway sections can be ignored. We can imagine a solid circle of radius R centimeters and a concentric dotted one of radius $(R+4)$ centimeters. The difference in their circumference is as follows:
$2 \pi(R+4)-2 \pi R=8 \pi \mathrm{~cm} \sim 25 \mathrm{~cm}$.
The car in the dotted slot should be given a 25 -centimeter head start. Or putting it differently, if equally fast cars begin at the same starting line, then the inside car should win a one lap race by 8π centimeters. Emphasize that this winning margin is independent of how sharp or gradual the semicircular ends of the track happen to be.

Question \#2: Suppose the track is laid out as in figure 2, and suppose two equally fast cars start off together from the starting line. Which should win a one-lap race -- the dotted or the solid -and by how much?

Solution: We have seen that for equally fast cars on a circular track, the inside car wins by 8π centimeters; so on a semicircular curve the inside car gains 4π centimeters and on a quartercircular curve it picks up 2π centimeters. We can chart the progress of the race as follows:

After completing turn Dotted car ahead by I 4π
 II $\quad 6 \pi$
 III 2π
 IV 0

The race should end in a tie. In other words, this is a fair track. No handicap needs to be given to either car. The solid path and the dotted path have the same length. Note: for this question, the distance between slots, 4 centimeters, turned out to be irrelevant, but it made the argument a bit more concrete.

Question \#3: Determine by how much the dotted car should be expected to win a one-lap race on each of the layouts in figure 3.

Most slot car race tracks have crossover pieces to help make the races fair.

