"TRIG CUT UPS"

Rearrange the sixteen squares to form one large square in which all matching sides form trigonometric identities.

	₽ sec ₽			h A D2D			COS ² A		-	1 Sec ² A	
$\sin A$		sec ² A - 1	$1 - \cos^2 A$		cot² A + 1	$\sin A$		cos A			csc A
	$\frac{\sin A}{\tan A}$			$\cos^2 A$			$\frac{1}{\sec A}$			tan A	
	t + A ^s too			t A too			A net A oes		1	h A top	1
$\frac{\sin A}{\cos A}$	10.	$\frac{1}{\sin A}$	sinA		cos² A	sin ² A		$\sin^2 A$	1 sec A		$\frac{1}{\cos A}$
	csc A			1			$1 - \sin A$			$1 + \tan^2 A$	
8	A too A nis			$\frac{\mathbf{A}^{s} \cos^{2} \mathbf{A}}{\mathbf{A} \sin \mathbf{A}}$		at	A soo		<u>s</u> .	Ļ	
$\cos^2 A \tan^2 A$		$\tan^2 A$	tan A		cot A	tan A cos A		sec ² A	$\sin^2 A \cot^2 A$		cos A
	cot A			$\cos A$		с	os A sec A			sin A	
cos A	, 1	1 - cos <i>A</i>	tan A cos A	A ^s olo	$\sin^2 A$	$\frac{\sin^2 A}{1 + \cos A}$	<u>A nia</u> A soo	$\frac{1}{\csc A}$	Sec² A − tan² A	u _s V + cos ²	$\overline{\omega}$ $\cot^2 A - \csc^2 A$
	$\cot A \sin A$			1			sec A			tan A	

From the *Mathematics Teacher*, March 1992