Four Cars Problem

Solution: Let $V(A), V(B), V(C)$ and $V(D)$ be the velocities of cars A, B, C and D respectively. Let the distance and time are measured when car A crosses B. At this moment let the distance of car C is x units and that of car D is y units. Then according to the given conditions

$$
\begin{align*}
& (V(A)-V(C)) \cdot 1=x \tag{1}\\
& (V(A)+V(D) \cdot 2)=y \tag{2}\\
& (V(B)+V(D) \cdot 4)=y \tag{3}\\
& (V(C)+V(D) \cdot 6)=y-x . \tag{4}
\end{align*}
$$

Let the time taken by car B to cross C be t. Then

$$
\begin{align*}
& (V(B)-V(C)) \cdot t=x \\
\Rightarrow \quad & t=\frac{x}{(V(B)-V(C))} . \tag{5}
\end{align*}
$$

From (2) and (3), we have

$$
\begin{equation*}
V(A)=2 V(B)+V(D) \tag{6}
\end{equation*}
$$

From (1), (3) and (6), we have

$$
\begin{equation*}
V(B)-V(C)=\frac{4 x-y}{4} \tag{7}
\end{equation*}
$$

From (5) and (7), we get

$$
\begin{equation*}
t=\frac{4 x}{4 x-y} . \tag{8}
\end{equation*}
$$

Subtracting ((4) from (3), we get

$$
\begin{equation*}
6(V(B)-V(C))=x+\frac{y}{2} . \tag{9}
\end{equation*}
$$

From (7) and (9) it can be shown that

$$
y=\frac{5 x}{2} .
$$

Putting thtis value of y in (8), we get

$$
t=\frac{8}{3} \text { hours }=2 \text { hour } 40 \text { minutes. }
$$

This shows that car B will cross car C at 11:40 h. Ans.

