Circle Problem

Let r be the radius of the circle. Then. according to the problem statement, we can define (see the figure):

$$
\begin{gathered}
\overline{A B}=2 r \\
\overline{A C}=\frac{2 r}{3} \\
\overline{O D}=r \\
\overline{O C}=r-\frac{2 r}{3}=\frac{r}{3} \\
\overline{O D}^{2}=\overline{C D}^{2}+\overline{O C}^{2}
\end{gathered}
$$

Substituting and resolving,

$$
\overline{C D}=\frac{2 \sqrt{2} r}{3}
$$

Now, the area of $\triangle A D B$ could be calculated as a function of r.

$$
\frac{1}{2}(2 r) \frac{2 \sqrt{2} r}{3}=\frac{2 \sqrt{2} r^{2}}{3}
$$

By other hand, triangles $\triangle D C F$ and $\triangle C G D$ are similar (two right angles and one common angle), so, $\frac{\overline{C F}}{\overline{C G}}=\frac{\overline{C D}}{\overline{D G}}$. Substituting and resolving,

$$
\begin{gathered}
\overline{C F}=\frac{\overline{C \bar{G}} \cdot \overline{C D}}{\overline{D G}} \\
\overline{C F}=\frac{\left(\frac{r}{3}\right)\left(\frac{2 \sqrt{2} r}{3}\right)}{r}=\frac{2 \sqrt{2} r}{9}
\end{gathered}
$$

The area of $\triangle D C E$ could be calculated as

$$
\frac{1}{2} \overline{D E} \cdot \overline{C F}=\frac{1}{2}(2 r)\left(\frac{2 \sqrt{2} r}{9}\right)=\frac{2 \sqrt{2} r^{2}}{9}
$$

Finally, the ratio of the area of $\triangle D C E$ to the area of $\triangle A D B$ is

$$
\frac{\frac{2 \sqrt{2} r^{2}}{9}}{\frac{2 \sqrt{2} r^{2}}{3}}=\frac{1}{3}
$$

