A Calculator-Assisted Fairy Tale from the December 1979 Mathematics Teacher

Directions: Use a calculator to solve the forty-two problems listed below to find the missing words in the fairy tale. Each solution will provide a word for the story if you turn your calculator upside down.

1. $\sqrt{692,224}=$ \qquad
2. $45^{3}-91,105=$ \qquad
3. $3,253,052 \div 95,678=$ \qquad
4. $27+59+102+39.4+107.6=$ \qquad
5. $573,841,327-146,729,330-427,111,780=$ \qquad
6. $16,133,202 \div 3,578=$ \qquad
7. $15\left(\frac{104,841 \times 2}{99}\right)=$ \qquad
8. $(27 \times 27)+(25 \times 7)=$ \qquad
9. $\frac{0.028 \times 1,456}{0.0002}-203,501=$ \qquad
10. $5,853.473+(24.78 \times 89.65)=$ \qquad
11. $244,593,909 \div 6,987=$ \qquad
12. $\frac{\sqrt{20,449}}{\sqrt{4,000,000}}=$
13. $\frac{9!}{3^{2}}-\frac{159,900}{2^{2}}=$ \qquad
14. $915.05-(23.8-16.75)=$ \qquad
15. $\frac{1}{25,000} \times 177,700 \times 1,000=$
16. $625 \times 25^{2}-352,887=$ \qquad
17. $10\left(\frac{11,359,672-4,382,715}{98,267}\right)=$
18. $15.067+138.94+207.5+9.623+566.87=$ \qquad
19. $199,444.68 \div 36.21=$ \qquad
20. $3 \times 0.5 \times 3^{5}-29.5=$ \qquad
21. $\left(2^{3}\right)(26.31+37.94)=$ \qquad
22. $124 \times 35 \times 76-294,831=$ \qquad
23. $\sqrt[4]{2,560,000}=$ \qquad
24. $\sqrt{4,096} \times \sqrt{5,184+307}=$
25. $2,929,073 \div 23^{2}=$ \qquad
26. $\sqrt{2,085,136} \div \sqrt{1,444}=$ \qquad
27. Find the sum of $128,39,46,72,55,27$, $34,376,1023,38,77,299,1834$, and 460. \qquad
28. $\frac{2 \times 85,197}{3 \times 56,798}=$ \qquad
29. $\frac{11 \bullet 12 \cdot 13 \cdot 14}{3}-294=$ \qquad
30. $41,539 \frac{1}{2} \div 45 \frac{1}{4}=$ \qquad
31. $\frac{2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13}{\frac{7}{2}}-1,475=$
32. $2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}+4^{3} \cdot 6^{3}-8^{4}-783=$ \qquad
33. $2^{5}(626.25)(0.0000002)=$ \qquad
34. $0.0032712 \div 0.47 \div 0.58 \div 0.24=$ \qquad
35. $8!+\frac{2,332,575}{63}=$
36. $7 \times 73 \times 17,471-(8,923,989-12)=$ \qquad
37. From ten million, subtract one hundred thousand.

From the result, subtract nine million one thousand.
Next, subtract eight hundred thousand.
Lastly, subtract fifty-three. \qquad
38. $16^{3} \times 2^{4}-(0.10158 \div 0.00001)=$ \qquad
39. $100 \times 10^{4}-\left(999 \times 10^{3}\right)-7=$ \qquad
40. hOLE - LGI $=$ \qquad
41. $\left(\frac{1}{4}\right)^{4} \times 1,000,000+1,007.75=$ \qquad
42. Take 200 away from BLESS $=$ \qquad

Now, fill in the blanks in the story on the next page with the answers from the 42 problems. Remember to turn your calculator upside down to obtain each word.

Once upon a time there was a handsome prince named
(1) \qquad , who lived in the country of (2) \qquad . \qquad went to (4) \qquad a beautiful princess named
(5) \qquad . She said,
"(6) \qquad , my father, King
(7) \qquad says before we may marry, you have to slay the (8) \qquad .
"(9) ____ (10) \qquad is (11) \qquad in the (12) \qquad . If
(13) \qquad were back in the (14) \qquad I could (15) \qquad that (16) \qquad in (17) \qquad . Why don't you
(18) \qquad
the (19) \qquad to (20) \qquad it my way and let me kill
(21) \qquad (22) \qquad instead?"
"(23) \qquad ," said the princess with a (24) \qquad , "you are
(25) \qquad brave than you should (26) \qquad ."
"(27) ___ ! ${ }^{[}$he cried, "(28) ___ am not over the (29) \qquad , but that (30) \qquad ham is not worth the
(31) \qquad I might get on my
(32) \qquad ."
"(33) \qquad " moaned the princess.
(34) \qquad , the prince loaded a (35) \qquad and shot a
(36) \qquad in the (37) \qquad of the pig.
"(38) \qquad you," said Ollie, and he ate his (39) \qquad with ham.

Liz did not (40) \qquad Zeb, and all was \qquad
(42) \qquad .

