Sum of an Arithmetic Series

(Special Case)

by Michael Steuben in Twenty Years Before the Blackboard

 

            In elementary school, Carl Gauss (1777 – 1855) was asked to sum the numbers from 1 to 100.  The teacher was probably expecting a few minutes of quiet, but Gauss produced the answer in seconds.

 

            He probably divided the set of 100 numbers into 50 pairs of 101:

1 + 100 = 101

2 +  99  = 101

3 +  98  = 101, etc.

 

Hence, the sum of  1 + 2 + 3 + 4 + … + 99 + 100 = 50 (101) = 5050.

 

            Algebra students can now derive the formula for the sum of the first n integers

by using Gauss’ trick:

 

            Let S =   1     +    2     +    3     +     4    +      + (n-2)  + (n-1)  +   n

         Then S =   n     + (n-1)  + (n-2)  +  (n-3) +      +     3    +   2      +   1

        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

               2S  = (n+1) + (n+1) + (n+1) + (n+1) +      + (n+1) + (n+1) + (n+1)

         

               2S = n (n + 1)

 

                 S = n (n + 1) / 2

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 

Now, back to Gauss, and the rest of the story …

 

School master:  Class, I want each of you to spend the next 15 minutes summing the

                           integers from 1 to 100.  This is difficult and I’m not sure of what

                           your chances are.

 

Gauss:                Fifty-fifty?

 

School master:  Incredible!  You calculated the correct sum immediately!

                           You’re a genius!