Answer to January 24, 2005 Problem

The Age-Old Problem

Frankie and Johnny are both celebrating birthdays today.

"Now my age is the product of two different prime numbers," Frankie observed. "What's more, I'll be able to say the same thing on four of my next six birthdays."

"My age is also the product of two primes," replied Johnny, "and the same will also be true on three of my next four birthdays."

How old are Frankie and Johnny?

 


Solution to the Problem:

Frankie is 33 (3 x 11).
Her other ages that will be products of two primes will be 34 (2 x 17), 35 (5 x 7), 38 (2 x 19), and 39 (3 x 13).

Johnny is 91 (7 x 13).
His other ages that will be products of two primes will be 93 (3 x 31), 94 (2 x 47), and 95 (5 x 19).

Jeffrey Gaither mentioned that Johnny could also be 141 or 142...


Correctly solved by:

1. Jim Arrison Norristown, Pennsylvania
2. Jo Monhollen Winchester, Virginia
3. Walt Arrison Philadelphia, Pennsylvania
4. Jeffrey Gaither Winchester, Virginia
5. Larry Schwartz Trumbull, Connecticut
6. Chris Rogers Winchester, Virginia
7. Tarpley Ashworth Harrisonburg, Virginia
8. Cameron Saunders Columbus, Georgia
9. Jessica Memmo Baltimore, Maryland
10. James Alarie University of Michigan -- Flint,
Flint, Michigan
11. Nathan Seifert Harrisonburg, Virginia
12. Mikael Holmquist Tullängsskolan, Sweden
13. Linus Oskarsson Tullängsskolan, Sweden
14. Jonas Melin Tullängsskolan, Sweden
15. Henry Woodward Columbus, Georgia
16. Johnas Eklof Tullängsskolan, Sweden
17. Tristan Collins Winchester, Virginia
18. Jason LaRusso Winchester, Virginia
19. Jonathan Jansson Tullängen, Örebro, Sweden
20. Ako Saleh Tullängsskolan, Sweden
21. Misty Carlisle Winchester, Virginia
22. Dave Smith Toledo, Ohio
23. Caleb Jones Columbus, Georgia
24. Davis and Judy Dixon Bennettsville, South Carolina
25. Felix Morling Tullängsskolan, Örebro, Sweden
26. Cameron Burkholder Winchester, Virginia
27. Bahadir Güngör Tullängskolan, Örebro, Sweden
28. Richard Johnson La Jolla, California