Quote of the Day:
"He who can properly define and divide is to be considered a god." -- Plato
Objectives:
The student will learn another method to evaluate integrals - long division.
1. Collect Homework.
2. Definition of the Natural Logarithm
3. Integral formulas for the tangent and cotangent
4. Using Long Division to integrate
First, Show Abbott and Costello's proof that 7x13=28 (Use LONG DIVISION to check)
Click here for Abbott and Costello's routine
If you are trying to integrate a quotient of polynomial expressions, examine
the highest powers of the numerator and the denominator.
If the degree of the numerator is equal to or greater than the degree of the
denominator, use long division to simplify the expression. Then integrate it.
Examples:
5. Examples:
6. Show the Integral Limerick - work out solution
7. Hand out Find the Bingo Sheets
8. Assignment
p. 434 (3, 7, 31, 32, 33)
Find The Bingo Worksheet (ex and logs)
Click here to go to the next page