Analytic Geometry Formulas
by David Pleacher



1. Circle
    (x - h)2 + (y - k)2 = r2
    center (h, k)
    radius r

2. Parabola
    (x - h)2 = 4p (y - k)
    opens up
    vertex (h, k)
    focus (h, k + p)
    directrix y = k - p

    (x - h)2 = -4p (y - k)
    opens down
    vertex (h, k)
    focus (h, k - p)
    directrix y = k + p

    (y - k)2 = 4p (x - h)
    opens right
    vertex (h, k)
    focus (h + p, k)
    directrix x = h - p

    (y - k)2 = -4p (x - h)
    opens left
    vertex (h. k)
    focus (h - p, k)
    directrix x = h + p

3. Ellipse
   
    center (h, k)
    a2 - b2 = c2 or
    a2 = b2 + c2
    foci (h - c, k), (h + c, k)
    sum of distances to foci = 2a
    major axis is parallel to x-axis = 2a
    minor axis is parallel to y-axis = 2b
    eccentricity = c / a
    vertices (h + a, k), (h - a, k),
                  (h, k + b), (h, k - b)

   
    center (h, k)
    a2 - b2 = c2 or
    a2 = b2 + c2
    foci (h, k+c), (h, k-c)
    sum of distances to foci = 2a
    major axis is parallel to x-axis = 2a
    minor axis is parallel to y-axis = 2b
    eccentricity = c / a
    vertices (h + b, k), (h - b, k),
                  (h, k + a), (h, k - a)

4. Hyperbola
   
    center is (h, k)
    c2 = a2 + b2
    vertices (h + a, k), (h - a, k)
    foci (h + c, k), (h - c, k)
    asymptotes:
       

   
    center is (h, k)
    c2 = a2 + b2
    vertices (h, k + a), (h, k - a)
    foci (h, k + c), (h, k - c)
    asymptotes:
       



Send any comments or questions to: David Pleacher