Given two circles that pass through each other's center.
Determine the ratio of the the common area of the two circles
to one of the circles.
Solution to the Problem:
The answer is .391002 or about 39.1%.
First note that the two circles must have the same radius! See the diagram below.
Correctly solved by:
1. Jim Arrison | Norristown, Pennsylvania |
2. David & Judy Dixon | Bennettsville, South Carolina |
3. Chris McCormick | Virginia Tech, Blacksburg, Virginia |
4. James Alarie | University of Michigan -- Flint, Flint, Michigan |
5. Sharina Broughton | Old Dominion University, Norfolk, Virginia |
6. Rob Adams | Winchester, Virginia |
7. Felix Morling | Tullängensskolan, Örebro, Sweden |
8. Larry Schwartz | Trumbull, Connecticut |
9. Jeffrey Gaither | Winchester, Virginia |
10. Erik Hagberg | Tullängensskolan, Örebro, Sweden |
11. Mikael Holmquist | Tullängensskolan, Örebro, Sweden |
12. Johnas Eklof | Tullängensskolan, Örebro, Sweden |
13. Richard Johnson | La Jolla, California |
14. Trey Mason | Winchester, Virginia |
15. Jason LaRusso | Winchester, Virginia |
16. Daniel Gardiner | Winchester, Virginia |