Frankie and Johnny are both celebrating birthdays today.
"Now my age is the product of two different prime numbers," Frankie observed. "What's more, I'll be able to say the same thing on four of my next six birthdays."
"My age is also the product of two primes," replied Johnny, "and the same will also be true on three of my next four birthdays."
How old are Frankie and Johnny?
Solution to the Problem:
Frankie is 33 (3 x 11).
Her other ages that will be products of two primes will
be 34 (2 x 17), 35 (5 x 7), 38 (2 x 19), and 39 (3 x 13).
Johnny is 91 (7 x 13).
His other ages that will be products of two primes will
be 93 (3 x 31), 94 (2 x 47), and 95 (5 x 19).
Correctly solved by:
1. Jim Arrison | Norristown, Pennsylvania |
2. Jo Monhollen | Winchester, Virginia |
3. Walt Arrison | Philadelphia, Pennsylvania |
4. Jeffrey Gaither | Winchester, Virginia |
5. Larry Schwartz | Trumbull, Connecticut |
6. Chris Rogers | Winchester, Virginia |
7. Tarpley Ashworth | Harrisonburg, Virginia |
8. Cameron Saunders | Columbus, Georgia |
9. Jessica Memmo | Baltimore, Maryland |
10. James Alarie | University of Michigan -- Flint, Flint, Michigan |
11. Nathan Seifert | Harrisonburg, Virginia |
12. Mikael Holmquist | Tullängsskolan, Sweden |
13. Linus Oskarsson | Tullängsskolan, Sweden |
14. Jonas Melin | Tullängsskolan, Sweden |
15. Henry Woodward | Columbus, Georgia |
16. Johnas Eklof | Tullängsskolan, Sweden |
17. Tristan Collins | Winchester, Virginia |
18. Jason LaRusso | Winchester, Virginia |
19. Jonathan Jansson | Tullängen, Örebro, Sweden |
20. Ako Saleh | Tullängsskolan, Sweden |
21. Misty Carlisle | Winchester, Virginia |
22. Dave Smith | Toledo, Ohio |
23. Caleb Jones | Columbus, Georgia |
24. Davis and Judy Dixon | Bennettsville, South Carolina |
25. Felix Morling | Tullängsskolan, Örebro, Sweden |
26. Cameron Burkholder | Winchester, Virginia |
27. Bahadir Güngör | Tullängskolan, Örebro, Sweden |
28. Richard Johnson | La Jolla, California |