I was playing Jackpot Yahtzee with two of my grandsons recently, and we wondered about the frequency of the different possible rolls in the game.   There are four dice with the following symbols on them:
Dice 1:     Orange, Orange, Bell, Bell, Cherry, Dollar
Dice 2:     Orange, Orange, Bell, Bell, Cherry, Dollar
Dice 3:     Orange, Bell, Dollar, Cherry, Cherry, Cherry
Dice 4:     Orange, Bell, Dollar, Cherry, Cherry, Cherry

The best possible roll is to get one of each of the four symbols: Orange, Cherry, Bell, and Dollar.

What is the probability of rolling the four dice and getting one each of the four symbols?
Express your answer as a fraction in reduced form.




Solution to the Problem:

The answer is 29/324.

First, determine the total possible ways in which the dice may be rolled:
Since each die contains six faces, there are 6 x 6 x 6 x 6 = 1,296 different possibilities.

Now, we must determine how many of these result in a different symbol on each die.
The chart below shows all 24 possible permutations of one symbol on each die,
and in how many ways that you can obtain it:

  Dice #1     Dice #2     Dice #3     Dice #4     # of Ways to get this combination  
O B C $ 2 x 2 x 3 x 1 = 12
O B $ C 2 x 2 x 1 x 3 = 12
O C B $ 2 x 1 x 1 x 1 = 2
O C $ B 2 x 1 x 1 x 1 = 2
O $ B C 2 x 1 x 1 x 3 = 6
O $ C B 2 x 1 x 3 x 1 = 6
B O C $ 2 x 2 x 3 x 1 = 12
B O $ C 2 x 2 x 1 x 3 = 12
B C O $ 2 x 1 x 1 x 1 = 2
B C $ O 2 x 1 x 1 x 1 = 2
B $ O C 2 x 1 x 1 x 3 = 6
B $ C O 2 x 1 x 3 x 1 = 6
C O B $ 1 x 2 x 1 x 1 = 2
C O $ B 1 x 2 x 1 x 1 = 2
C B O $ 1 x 2 x 1 x 1 = 2
C B $ O 1 x 2 x 1 x 1 = 2
C $ O B 1 x 1 x 1 x 1 = 1
C $ B O 1 x 1 x 1 x 1 = 1
$ O B C 1 x 2 x 1 x 3 = 6
$ O C B 1 x 2 x 3 x 1 = 6
$ B O C 1 x 2 x 1 x 3 = 6
$ B C O 1 x 2 x 3 x 1 = 6
$ C O B 1 x 1 x 1 x 1 = 1
$ C B O 1 x 1 x 1 x 1 = 1


There are 116 ways in which you can roll a different symbol on each die.
So, the probability of getting one different symbol on each die is 116 / 1296, which reduces to 29 / 324.
This is equivalent to a probability of 0.0895 or 8.95%.

James Alarie sent in a list of all 116 ways that this can occur:
 1. Orange Bell Dollar Cherry
 2. Orange Bell Dollar Cherry
 3. Orange Bell Dollar Cherry
 4. Orange Bell Cherry Dollar
 5. Orange Bell Cherry Dollar
 6. Orange Bell Cherry Dollar
 7. Orange Bell Dollar Cherry
 8. Orange Bell Dollar Cherry
 9. Orange Bell Dollar Cherry
 10. Orange Bell Cherry Dollar
 11. Orange Bell Cherry Dollar
 12. Orange Bell Cherry Dollar
 13. Orange Cherry Bell Dollar
 14. Orange Cherry Dollar Bell
 15. Orange Dollar Bell Cherry
 16. Orange Dollar Bell Cherry
 17. Orange Dollar Bell Cherry
 18. Orange Dollar Cherry Bell
 19. Orange Dollar Cherry Bell
 20. Orange Dollar Cherry Bell
 21. Orange Bell Dollar Cherry
 22. Orange Bell Dollar Cherry
 23. Orange Bell Dollar Cherry
 24. Orange Bell Cherry Dollar
 25. Orange Bell Cherry Dollar
 26. Orange Bell Cherry Dollar
 27. Orange Bell Dollar Cherry
 28. Orange Bell Dollar Cherry
 29. Orange Bell Dollar Cherry
 30. Orange Bell Cherry Dollar
 31. Orange Bell Cherry Dollar
 32. Orange Bell Cherry Dollar
 33. Orange Cherry Bell Dollar
 34. Orange Cherry Dollar Bell
 35. Orange Dollar Bell Cherry
 36. Orange Dollar Bell Cherry
 37. Orange Dollar Bell Cherry
 38. Orange Dollar Cherry Bell
 39. Orange Dollar Cherry Bell
 40. Orange Dollar Cherry Bell
 41. Bell Orange Dollar Cherry
 42. Bell Orange Dollar Cherry
 43. Bell Orange Dollar Cherry
 44. Bell Orange Cherry Dollar
 45. Bell Orange Cherry Dollar
 46. Bell Orange Cherry Dollar
 47. Bell Orange Dollar Cherry
 48. Bell Orange Dollar Cherry
 49. Bell Orange Dollar Cherry
 50. Bell Orange Cherry Dollar
 51. Bell Orange Cherry Dollar
 52. Bell Orange Cherry Dollar
 53. Bell Cherry Orange Dollar
 54. Bell Cherry Dollar Orange
 55. Bell Dollar Orange Cherry
 56. Bell Dollar Orange Cherry
 57. Bell Dollar Orange Cherry
 58. Bell Dollar Cherry Orange
 59. Bell Dollar Cherry Orange
 60. Bell Dollar Cherry Orange
 61. Bell Orange Dollar Cherry
 62. Bell Orange Dollar Cherry
 63. Bell Orange Dollar Cherry
 64. Bell Orange Cherry Dollar
 65. Bell Orange Cherry Dollar
 66. Bell Orange Cherry Dollar
 67. Bell Orange Dollar Cherry
 68. Bell Orange Dollar Cherry
 69. Bell Orange Dollar Cherry
 70. Bell Orange Cherry Dollar
 71. Bell Orange Cherry Dollar
 72. Bell Orange Cherry Dollar
 73. Bell Cherry Orange Dollar
 74. Bell Cherry Dollar Orange
 75. Bell Dollar Orange Cherry
 76. Bell Dollar Orange Cherry
 77. Bell Dollar Orange Cherry
 78. Bell Dollar Cherry Orange
 79. Bell Dollar Cherry Orange
 80. Bell Dollar Cherry Orange
 81. Cherry Orange Bell Dollar
 82. Cherry Orange Dollar Bell
 83. Cherry Orange Bell Dollar
 84. Cherry Orange Dollar Bell
 85. Cherry Bell Orange Dollar
 86. Cherry Bell Dollar Orange
 87. Cherry Bell Orange Dollar
 88. Cherry Bell Dollar Orange
 89. Cherry Dollar Orange Bell
 90. Cherry Dollar Bell Orange
 91. Dollar Orange Bell Cherry
 92. Dollar Orange Bell Cherry
 93. Dollar Orange Bell Cherry
 94. Dollar Orange Cherry Bell
 95. Dollar Orange Cherry Bell
 96. Dollar Orange Cherry Bell
 97. Dollar Orange Bell Cherry
 98. Dollar Orange Bell Cherry
 99. Dollar Orange Bell Cherry
 100. Dollar Orange Cherry Bell
 101. Dollar Orange Cherry Bell
 102. Dollar Orange Cherry Bell
 103. Dollar Bell Orange Cherry
 104. Dollar Bell Orange Cherry
 105. Dollar Bell Orange Cherry
 106. Dollar Bell Cherry Orange
 107. Dollar Bell Cherry Orange
 108. Dollar Bell Cherry Orange
 109. Dollar Bell Orange Cherry
 110. Dollar Bell Orange Cherry
 111. Dollar Bell Orange Cherry
 112. Dollar Bell Cherry Orange
 113. Dollar Bell Cherry Orange
 114. Dollar Bell Cherry Orange
 115. Dollar Cherry Orange Bell
 116. Dollar Cherry Bell Orange




Correctly solved by:

1. James Alarie Flint, Michigan
2. Richard O'Leary John Paul II Catholic High School,
Tallahassee Florida