Some Solutions to the Problem:
0 = 2 * 0 * 13 or 2 + 0 + 1 - 3
or 2*0*1*3
1 = -2 + 0 * 1 + 3 or (2+0+1)/3
2 = 2 + 0 * 13 or 2+0*1*3
3 = 2 + 0 + 1^3 or 2*0*1+3
4 = -2 + 0 + 1 + 3 or 2+0-1+3
or 2*0+1+3
5 = 2 + 0 + 1 * 3 or 2+0*1+3
6 = 2 + 0 + 1 + 3 or 2*0*1+(3!)
7 = 20 - 13 or (20+1)/3
8 = 2 + 0 * 1 + 3! or (2+0)*(1+3)
9 = - int(sqrt(20)) + 13 or (2 + 0 + 1) * 3
or 2 + 0 + 1 + 3! or (2+0+1)*3
10 = 20 / (-1 + 3)
or INT(SQRT(20))^1+(3!)
11 = -2 + 0 + 13 or int(sqrt(201))-3
or INT(SQRT(20))+1+(3!)
12 = -(2^0) + 13 or (2+0+1)!+3!
or INT(SQRT(20))*1*3
13 = 2 * 0 + 13 or 20-1-3!
14 = 20 - 1 * 3! or 2^0 + 13
or 20/1-3! or INT(SQRT(2)+0+13)
15 = 20 + 1 - 3! or 2+0+13
16 = 20 - 1 - 3
17 = 20 * 1 - 3 or 20/1-3
18 = 20 + 1- 3
19 = 20 - (1^3)
20 = 20 * (1^3) or int(sqrt(201))+3!
21 = 20 + 1^3
22 = 20 - 1 + 3
23 = 20 * 1 + 3 or 20/1+3 or 20+1*3
24 = 20 + 1 + 3 or 2*0+(1+3)!
25 = 20 - 1 + 3! or 20-1+(3!)
26 = 20 * 1 + 3! or 20/1+3!
or 2+0+(1+3)!
27 = 20 + 1 + 3! or (2+0+1)^3
28 = 2 * (0! + 13)
or INT(SQRT(20))+(1+3)!
or int(sqrt(201))*int(sqrt(3!))
29 = int(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(201!)))))))))*int(sqrt(3))
30 = (2+0!+1)!+3!
31 = int(sqrt(sqrt(sqrt(sqrt(24!))))*sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(3)))))))
32 = int(sqrt(sqrt(sqrt(sqrt(24!))))*sqrt(sqrt(sqrt(sqrt(3)))))
33 = int(sqrt(sqrt(sqrt(sqrt(24!)))))*int(sqrt(sqrt(sqrt(sqrt(3)))))
34 = int(sqrt(sqrt(sqrt(sqrt(24!*3!)))))
35 = int(sqrt(sqrt(sqrt(sqrt(24!))))*sqrt(sqrt(sqrt(3))))
James Alarie gets extra credit for solving 1 through 35.
Mike Bova gets extra credit for solving 1 through 28.