Some Solutions to the Problem:
0 = 2 * 0 * 1 * 4
1 = 2 * 0 + 1^4 or -2 + 0 -1 + 4
2 = 2 + 0 * 1 * 4
3 = 2 * 0 - 1 + 4
4 = 2 * 0 * 1 + 4
5 = 2 * 0 + 1 + 4 or 2 + 0 - 1 + 4
6 = 20-14 or 2 + 0! -1 + 4
or 2 + 0 * 1 + 4
7 = 2 + 0 + 1 + 4
8 = 2 * 0! * 1 * 4 or 2 + 0! + 1 + 4
or (2+0(1))4
9 = (2 + 0!)*(-1 + 4) or (2 + 0!)! - 1 + 4
or (2+0+1)^sqrt(4)
10 = 2 * 0!*(1 + 4) or (2 + 0!)! * 1 + 4
or (2+0)(1+4)
11 = (2 + 0!)! + 1 + 4
or sqrt(2^0+(1+4)!)
12 = (2 + 0 + 1) * 4
13 = -(2^0) + 14 or -2 + 0! + 14
14 = 2 * 0 + 14 or (2^0)(14)
15 = 2^0 + 14 or (2 + 0!) * (1 + 4)
or 20-1-4
16 = 2 + 0 + 14 or (2 + 0! + 1) * 4
or 20-1(4)
17 = 20 + 1 - 4 or 2 + 0! + 14
18 = 20 - sqrt(1 * 4) or -(2 + 0!)! * 1 * 4!
or 20-1(sqrt(4))
19 = 20 - (1^4) or 20 - 1 ^ 4
20 = 20 * (1^4) or (2 + 0!)! + 14
21 = 20 + (1^4) or -(2+0+1)+4!
22 = 20 + 1 * sqrt(4) or -2 + 0 * 1 + 4!
23 = 20 - 1 + 4 or 2 * 0 - 1 + 4!
24 = 20 * 1 + 4 or 2 * 0 * 1 + 4!
25 = 20 + 1 + 4 or 2 * 0 + 1 + 4!
26 = (2 + 0! + 1)! + sqrt(4)
or 2 + 0 * 1 + 4!
27 = 2 + 0 + 1 + 4! or
int(sqrt(((2 + 0 + 1)!)!) * sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(4))))))))
28 = 2 + 0! + 1 + 4! or ((2 + 0!)! + 1) * 4
29 = (2 + 0!)! - 1 + 4!
or int(sqrt(((2 + 0 + 1)!)!) * sqrt(sqrt(sqrt(sqrt(4)))))
30 = (2 + 0!)!*(1 + 4)
or (2 + 0 + 1)! + 4!
31 = (2 + 0!)! + 1 + 4!
32 = 2 * ((0! + 1) ^ 4) or 2^(0+1+4)
33 = [(sqrt(2) + 0 * 1) * 4!]
34 = 20 + 14
35 = [sqrt(((2 + 0!)! + 1)! )/sqrt(4)]
36 = (2 + 0!)! * (-1 + 4)! or
37 = [sqrt(sqrt(2) + 0 + 1) * 4!]
38 = (20 - 1) * sqrt(4)
39 = [2 + 0 +sqrt(sqrt(sqrt(sqrt((1 + 4!)!))))]
40 = 20 * 1 * sqrt(4)
41 = [sqrt(sqrt(sqrt(sqrt((2+0!)!*(1+4!)!))))]
42 = (20 + 1) * sqrt(4)
43 = (2 +0!)! + [sqrt(sqrt(sqrt(sqrt((1 + 4!)!))))] or 20-(1-4!)
44 = 2 * (-0! - 1 + 4!) or 20+1(4!)
45 = -[sqrt(2)] + [sqrt(sqrt(sqrt(sqrt((0! + 1 + 4!)!))))]
46 = 2 * (0 - 1 + 4!)
47 = -[sqrt(2)] + (0! + 1) * 4!
48 = 2 * (0! - 1 + 4!) or (2+0(1))!4!
49 = [sqrt(2)] + (0! + 1) * 4!
50 = 2 * (0 + 1 + 4!)
James Alarie gets extra credit for solving 1 through 50.