Some Solutions to the Problem:
0 = 2 * 0 * 1 * 5
1 = 2 * 0 + 1^5 or 2*0+1^5
or (2^0)(1^5)
2 = -2 + 0 - 1 + 5 or 2+0*1*5
3 = -2 + 0 * 1 + 5
4 = 2 * 0 - 1 + 5 or (20)/(1*5)
or 2 + 0! + 1^5
5 = 2 * 0 + 1 * 5 or 20 - 15
or ((2^0)-1)+5 or 2*0*1+5
6 = 2 + 0 - 1 + 5 or 2*0+1+5
7 = 2 + 0 + 1 * 5 or 2+0*1+5
8 = 2 * 0 + 1 + 5 or 2+0+1+5
9 = 2 + 0! + 1 + 5 or 2^(0!+1)+5
10 = (2 + 0 * 1) * 5 or 2*(0*1+5)
or ((2^0)+1)*5 or 2*0!*1*5
11 = (2 + 0!)! + (1 * 5) or (2+0+1)!+5
12 = (2 + 0) * (1 + 5) or 2*(0+1+5)
or 2*0!*(1+5)
13 = -2 + 0 + 15 or 2+0+sqrt(1+5!)
or int(sqrt(201))-int(sqrt(sqrt(5)))
14 = 20 - 1 - 5 or 2*(0!+1+5)
or -2+0!+15
15 = 20 * 1 - 5 or 20-1*5
or (2+0+1)*5 or (2*0!+1)*5
16 = 20 + 1 - 5 or 2^(0-1+5)
or 2-0!+15
17 = 2 + 0 + 15 or 2*0!+15
or int(sqrt(20*15))
18 = 2 + 0! + 15 or (2+0!)*(1+5)
19 = 20 - (1^5) or (2+0!+1)!-5
or 20-1^5
20 = 20 * (1^5) or (2+0!+1)*5
21 = 20 + (1^5) or (2 + 0!)! + 15
or -2 - (0!) + (-1 + 5)!
22 = -2 + 0 + (-1 + 5)!
or (2+0!+1)!-int(sqrt(5))
23 = -(2^0) + (-1 + 5)!
or int(20*sqrt(sqrt(sqrt(sqrt(15)))))
24 = (2 * 0 - 1 + 5)! or 20-1+5
25 = 20 * 1 + 5 or 2^0 + (-1 + 5)!
or 20+1*5
26 = 2 + 0 + (-1 + 5)! or 20 + 1 + 5
27 = 2 + 0! + (-1 + 5)! or
int(sqrt(sqrt(sqrt(sqrt(20!))))*sqrt(sqrt(15)))
28 = [sqrt(20] + (-1 + 5)!
or int(sqrt(201))*int(sqrt(5))
29 = (2 + 0! + 1)! + 5
30 = (2 + 0) * 15 or (2 + 0!)! + (-1 + 5)!
or (2 + 0!)! * 1 * 5
31 = int(sqrt(201*5))
32 = 2^(0 + 1 * 5) or (2+0*1)^5
33 = int(int(sqrt(20))!*sqrt(sqrt(sqrt(15))))
34 = [sqrt(20)]! + [sqrt(1 x 5)!)]
35 = 20 + 15
36 = (2 +0!)! * (1 + 5)
37 = int(sqrt(sqrt(sqrt(sqrt((20+1*5)!)))))
38 = (20 - 1) x [sqrt(5)]
39 = [sqrt(20)]! + 15
40 = [201 / 5] or 20 * (1 * [sqrt(5)]
41 = int(sqrt(sqrt(sqrt(sqrt( [sqrt(((2 + 0!)!)!)]!))))) - (1 x 5) or
42 = (20 + 1) * [sqrt(5)]
43 = int(sqrt(sqrt((2*(0*1+5))!)))
44 = [sqrt(2015)] or 20 + (-1 + 5)!
45 = (2 + 0!) * 15
46 = int(sqrt(sqrt(sqrt(sqrt((20+1+5)!)))))
47 = int(sqrt(sqrt(sqrt(20*15!))))
48 = (2 + 0) * ((-1+ 5)!)
49 = int(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(2^((0+1+5)!)))))))))
50 = int(sqrt(sqrt(sqrt(sqrt(sqrt(int(sqrt(2015))!))))))
James Alarie receives extra credit for solving 1 through 33 consecutively and most of the others up to 50.