March 2016
Problem of the Month

Tic-Tac-Logic



Tic-Tac-Logic is a single player puzzle based on tic-tac-toe.

The puzzle consists of a grid containing X's and O's in various places.

The object is to place X or O in the remaining squares so that:
  1. There are no more than two consecutive X's or O's in a row or column;
  2. the number of X's is the same as the number of O's in each row and column; and
  3. all rows are unique and all columns are unique.


Click here for a printer version of this puzzle


Solution to the Problem:



James Alarie sent in six other solutions:
x x O O x O x x O O
O x O x O O x O x x
x O x x O x O x O O
x O x O x x O O x O
O x O O x O x O x x
O O x x O O x x O x
x O O x O x O x x O
O x x O x O x O O x
x O x O x x O x O O
O x O x O x O O x x

x x O O x O x x O O
O O x x O O x O x x
x O x x O x O x O O
x x O O x x O O x O
O x O O x O x O x x
O O x x O O x x O x
x O O x O x O x x O
O x x O x O x O O x
x O x O x x O x O O
O x O x O x O O x x

x O x O x O x x O O
O x O x O O x O x x
x O x x O x O x O O
x x O O x x O O x O
O x O O x O x O x x
O O x x O O x x O x
x O O x O x O x x O
O x x O x O x O O x
x O x O x x O x O O
O x O x O x O O x x

x x O O x O x x O O
O x O x O O x O x x
x O x x O x O x O O
x O x O x x O O x O
O x O O x O x O x x
O O x x O O x x O x
x O O x O x O x x O
O x x O x O x O O x
x O x O x x O O x O
O x O x O x O x O x

x x O O x O x x O O
O O x x O O x O x x
x O x x O x O x O O
x x O O x x O O x O
O x O O x O x O x x
O O x x O O x x O x
x O O x O x O x x O
O x x O x O x O O x
x O x O x x O O x O
O x O x O x O x O x

x O x O x O x x O O
O x O x O O x O x x
x O x x O x O x O O
x x O O x x O O x O
O x O O x O x O x x
O O x x O O x x O x
x O O x O x O x x O
O x x O x O x O O x
x O x O x x O O x O
O x O x O x O x O x
						




Correctly solved by:

1. James Alarie (sent in 6 solutions) Flint, Michigan
2. Sreeroopa Sankararaman Singapore, Singapore
3. Braxton Fryer Mountain View High School,
Mountain View, Wyoming
4. Ignas Masuiliouis Culver Academies,
Culver, Indiana
5. Ella Surzynski Culver Academies,
Culver, Indiana
6. Jessica Hamblin Mountain View High School,
Mountain View, Wyoming
7. Shay Martin Mountain View High School,
Mountain View, Wyoming
8. Marco Morelli (sent in 2 solutions) Fermo, Italy
9. Ashlee Rudy Mountain View High School,
Mountain View, Wyoming
10. Danilo Calcinaro Istituto Tecnico Tecnologico (ITT) "Montani",
Fermo, Italy
11. Federico Fragolette Istituto Tecnico Tecnologico (ITT) "Montani",
Fermo, Italy


Send any comments or questions to: David Pleacher