Tic-Tac-Logic is a single player puzzle based on tic-tac-toe.
The puzzle consists of a grid containing X's and O's in various places.
The object is to place X or O in the remaining squares so that:
- There are no more than two consecutive X's or O's in a row or column;
- the number of X's is the same as the number of O's in each row and column; and
- all rows are unique and all columns are unique.
Click here for a printer version of this puzzle
Solution to the Problem:
James Alarie sent in six other solutions:
x x O O x O x x O O O x O x O O x O x x x O x x O x O x O O x O x O x x O O x O O x O O x O x O x x O O x x O O x x O x x O O x O x O x x O O x x O x O x O O x x O x O x x O x O O O x O x O x O O x x x x O O x O x x O O O O x x O O x O x x x O x x O x O x O O x x O O x x O O x O O x O O x O x O x x O O x x O O x x O x x O O x O x O x x O O x x O x O x O O x x O x O x x O x O O O x O x O x O O x x x O x O x O x x O O O x O x O O x O x x x O x x O x O x O O x x O O x x O O x O O x O O x O x O x x O O x x O O x x O x x O O x O x O x x O O x x O x O x O O x x O x O x x O x O O O x O x O x O O x x x x O O x O x x O O O x O x O O x O x x x O x x O x O x O O x O x O x x O O x O O x O O x O x O x x O O x x O O x x O x x O O x O x O x x O O x x O x O x O O x x O x O x x O O x O O x O x O x O x O x x x O O x O x x O O O O x x O O x O x x x O x x O x O x O O x x O O x x O O x O O x O O x O x O x x O O x x O O x x O x x O O x O x O x x O O x x O x O x O O x x O x O x x O O x O O x O x O x O x O x x O x O x O x x O O O x O x O O x O x x x O x x O x O x O O x x O O x x O O x O O x O O x O x O x x O O x x O O x x O x x O O x O x O x x O O x x O x O x O O x x O x O x x O O x O O x O x O x O x O x
Correctly solved by:
1. James Alarie (sent in 6 solutions) | Flint, Michigan |
2. Sreeroopa Sankararaman | Singapore, Singapore |
3. Braxton Fryer |
Mountain View High School, Mountain View, Wyoming |
4. Ignas Masuiliouis |
Culver Academies, Culver, Indiana |
5. Ella Surzynski |
Culver Academies, Culver, Indiana |
6. Jessica Hamblin |
Mountain View High School, Mountain View, Wyoming |
7. Shay Martin |
Mountain View High School, Mountain View, Wyoming |
8. Marco Morelli (sent in 2 solutions) | Fermo, Italy |
9. Ashlee Rudy |
Mountain View High School, Mountain View, Wyoming |
10. Danilo Calcinaro |
Istituto Tecnico Tecnologico (ITT) “Montani”, Fermo, Italy |
11. Federico Fragolette |
Istituto Tecnico Tecnologico (ITT) “Montani”, Fermo, Italy |