Can you arrange the five digits, 1, 2, 3, 4, and 5 in such a way that,
with the aid of some mathematical symbols, you can obtain the four numbers: 111, 222, 333,
and 999?
You must use each of the five digits exactly once but in any order.
You may use any of the math symbols or functions:
addition (+), subtraction (-), multiplication (x),
division (/), exponentiation (^), factorials (!), and parentheses ().
Solution to the Problem:
111 = 135 - 24 or 111 = (1*5!)-(2+3+4) or 111 = 54 * 2 + 3* 1or 111 = 1(23 * 5 - 4) or (2^5 + 4 + 1) * 3
or 111 = 5! - 3! - 4 + 2 - 1 or 111 = 5! - (3^2) * 1^4
222 = 213 + 4 + 5 or 222 = ((5+1)^3)+(4+2) or 15 ^(4/2) - 3
or 222 = 3^(5) - 4! + 2 + 1 or (2^5 + 4 + 1) * 3!
333 = 345 - 12 or 333 = ((4x2)! / 5!) - (3*1) or ((3!)! - 54) / 2 * 1
or 333 = 5! * 3 - 4! - 2 - 1
999 = 4 ^ (3! - 1) - 25 or 5^3 x 4 x 2 - 1 or ((5x2)^3)-(1^4)
or (5^3 * 2 *4) - 1 or (5*4/2)^3 - 1 or 999 = (3!-2)^(5) -4! - 1
Correctly solved by:
1. Brijesh Dave | Mumbai City, Maharashtra, India |
2. Colin (Yowie) Bowey | Beechworth, Victoria, Australia |
3. Ivy Joseph | Pune, Maharashtra, India |
4. Veena Mg | Bangalore, Karnataka, India |
5. Wyatt Jensen |
Mountain View High School, Mountain View, Wyoming |
6. Kelly Stubblefield | Mobile, Alabama |
7. Reagan Geer |
Redlands Middle School, Grand Junction, Colorado |