October 2020
Problem of the Month

Five Digits
Submitted by Brijesh Dave



Can you arrange the five digits, 1, 2, 3, 4, and 5 in such a way that, with the aid of some mathematical symbols, you can obtain the four numbers:   111,   222,   333,   and   999?

You must use each of the five digits exactly once but in any order.

You may use any of the math symbols or functions: addition (+), subtraction (-), multiplication (x), division (/), exponentiation (^), factorials (!), and parentheses ().



Solution to the Problem:

111 = 135 - 24     or
    111 = (1*5!)-(2+3+4)     or
    111 = 54 * 2 + 3* 1     or
    111 = 1(23 * 5 - 4)     or
    111 = (2^5 + 4 + 1) * 3     or
    111 = 5! - 3! - 4 + 2 - 1     or
    111 = 5! - (3^2) * 1^4

222 = 213 + 4 + 5     or
    222 = ((5+1)^3)+(4+2)     or
    222 = 15 ^(4/2) - 3     or
    222 = 3^(5) - 4! + 2 + 1     or
    222 = (2^5 + 4 + 1) * 3!

333 = 345 - 12     or
    333 = ((4x2)! / 5!) - (3*1)     or
    333 = ((3!)! - 54) / 2 * 1     or
    333 = 5! * 3 - 4! - 2 - 1

999 = 4 ^ (3! - 1) - 25     or
    999 = 5^3 x 4 x 2 - 1     or
    999 = ((5x2)^3)-(1^4)     or
    999 = (5^3 * 2 *4) - 1     or
    999 = (5*4/2)^3 - 1     or
    999 = (3!-2)^(5) -4! - 1



Correctly solved by:

1. Brijesh Dave Mumbai City, Maharashtra, India
2. Colin (Yowie) Bowey Beechworth, Victoria, Australia
3. Ivy Joseph Pune, Maharashtra, India
4. Veena Mg Bangalore, Karnataka, India
5. Wyatt Jensen Mountain View High School,
Mountain View, Wyoming
6. Kelly Stubblefield Mobile, Alabama
7. Reagan Geer Redlands Middle School,
Grand Junction, Colorado



Send any comments or questions to: David Pleacher