December 2021
Problem of the Month

A Christmas Message



Solve each of the 26 problems labeled A through Z.

Then replace each blank with the letter corresponding to the number below it to learn the Christmas message.

Symbols used: +, -, /, * is multiplication, sqrt is square root, ! is factorial, [ ] is the greatest integer, ^ is exponent.

A. ____ [sqrt(202)] - 1
B. ____ 2 * 0 + 2 + 1
C. ____ 20 - 2 + 1
D. ____ (2 + (0)!) * 2 + 1
E. ____ [sqrt(20)] + [sqrt(21)]
F. ____ 20 + 2 - 1
G. ____ (2 + 0!)! * 2 * 1
H. ____ (2 + 0) * (2 + 1)
I . ____ (2 + 0 + 2 * 1)!
J. ____ 20 - 2 * 1
K. ____ 20 + (2 + 1)!
L. ____ 20 + 2 * 1

M. ____ 20 / 2 * 1
N. ____ 2 + 0 * 21
O. ____ [(sqrt(202))] + 1
P. ____ 20 * (2 - 1)
Q. ____ 20 / 2 - 1
R. ____ ( 2 + 0 + 2)! + 1
S. ____ 20 / 2 + 1
T. ____ 20 + 2 + 1
U. ____ 2 + 0 + 2 + 1
V . ____ 2 ^ (0! + 2 + 1)
W. ____ 20 - (2 + 1)!
X. ____ 2 + 0 + 2 * 1
Y. ____ 20 - 2 - 1
Z. ____ -20 + 21

Now using the answers above, write the letters in the spaces below to discover the Christmas message:

__ __ __ __ __ __ __ __ __ __ __ 5 2 3 8 26 2 15 14 2 11 23 __ __ __ __ __ __ 23 15 10 15 11 23 __ __ __ __ __ __ __ __ __ __ __ , 23 6 8 15 22 15 12 24 13 2 11 __ __ __ __ __ __ __ __ 23 6 8 25 8 14 13 11 __ __ __ __ __ __ __ 13 21 15 5 25 23 6 __ __ __ __ __ __ __ , 14 24 11 8 10 13 2 __ __ __ __ __ __ 14 6 15 14 13 11 __ __ __ __ __ __ 23 5 25 2 8 7 __ __ __ __ __ __ __ 13 14 13 17 21 15 25 __ __ __ __ __ __ __ __ __ 3 25 24 2 12 24 2 12 13 __ __ __ __ __ __ __ __ __ . 21 25 5 24 23 19 13 26 8

Click here for a printer version of the puzzle



Solution to the Problem:

The answer to the Christmas message is:

Unbeknownst to most theologians, there was a fourth wiseman, who was turned away for bringing a fruitcake.

A   13 = [sqrt(202)] - 1
B   3 = 2 * 0 + 2 + 1
C   19 = 20 - 2 + 1
D   7 = (2 + (0)!) * 2 + 1
E   8 = [sqrt(20)] + [sqrt(21)]
F   21 = 20 + 2 - 1
G   12 = (2 + 0!)! * 2 * 1
H   6 = (2 + 0) * (2 + 1)
I   24 = (2 + 0 + 2 * 1)!
J   18 = 20 - 2 * 1
K   26 = 20 + (2 + 1)!
L   22 = 20 + 2 * 1
M   10 = 20 / 2 * 1
N   2 = 2 + 0 * 21
O   15 = [(sqrt(202))] + 1
P   20 = 20 * (2 - 1)
Q   9 = 20 / 2 - 1
R   25 = ( 2 + 0 + 2)! + 1
S   11 = 20 / 2 + 1
T   23 = 20 + 2 + 1
U   5 = 2 + 0 + 2 + 1
V   16 = 2 ^ (0! + 2 + 1)
W   14 = 20 - (2 + 1)!
X   4 = 2 + 0 + 2 * 1
Y   17 = 20 - 2 - 1
Z   1 = -20 + 21



Correctly solved by:

1. Colin (Yowie) Bowey Beechworth, Victoria, Australia
2. Halle Porter Mountain View High School,
Mountain View, Wyoming
3. Veena Mg Bangalore, Karnataka, India
4. Sara Gagler Central High School,
Grand Junction, Colorado
5. Dr. Hari Kishan D.N. College,
Meerut, Uttar Pradesh, India
6. Holly Hamblin Mountain View High School,
Mountain View, Wyoming
7. J. Colby Central High School, Grand Junction, Colorado
8. Ashley Martin Mountain View High School,
Mountain View, Wyoming
9. Jaxon Antonino Mountain View High School,
Mountain View, Wyoming
10. Ashley Thomas Mountain View High School,
Mountain View, Wyoming
11. Maddison Aimone Mountain View High School,
Mountain View, Wyoming
12. Cash Henrie Mountain View High School,
Mountain View, Wyoming
13. Shaelin Wiggill Mountain View High School,
Mountain View, Wyoming
14. Tyler Duarte Central High School, Grand Junction, Colorado
15. Charleigh Windley Mountain View High School,
Mountain View, Wyoming
16. Jasmine Hernandez Mountain View High School,
Mountain View, Wyoming
17. Kole Behunin Mountain View High School,
Mountain View, Wyoming
18. Alysa Cantlin Mountain View High School,
Mountain View, Wyoming
19. Ivy Joseph Pune, Maharashtra, India
20. Yishai Trowbridge Central High School,
Grand Junction, Colorado
21. Joseph Moore Denver, Colorado
22. Kelly Stubblefield Mobile, Alabama



Send any comments or questions to: David Pleacher